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Introduction 

 

This course material, designed for first-year Master's students in Biomedical Engineering, focuses 

on "Advanced Processing of Physiological Signals." It provides the theoretical and practical knowledge 

necessary to analyze and process various physiological signals, such as electrocardiograms (ECG), 

electroencephalograms (EEG), and medical images like MRIs and X-rays. These signals are often 

affected by noise and artifacts, making their interpretation challenging. The course addresses advanced 

signal processing techniques, including digital filters (FIR and IIR) and the Discrete Fourier Transform 

(DFT), crucial for enhancing signal quality by reducing noise and extracting relevant diagnostic 

information. 

In addition to these techniques, the course covers the essential characteristics and classification of 

physiological signals, such as their origin (cardiac, neural) and type (continuous, discrete), which are 

essential for accurate interpretation and application in medical diagnosis. It also delves into how random 

or stochastic signals behave in linear systems, focusing on how system properties like stability and 

impulse response affect signal filtering and system performance. These insights are vital for improving 

signal processing, noise reduction, and system optimization in biomedical applications. 

Through this material, students will develop a deep understanding of filtering concepts, the 

application of the DFT in signal analysis, and how to design digital filters tailored to biomedical needs. 

They will also gain practical skills in using software tools for the effective processing of physiological 

signals. 
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1.1 Signal 

A signal is the physical representation of information to be transmitted, serving as the entity that 

carries this information.  

Examples of signals include acoustic waves, such as the current produced by a microphone 

(speech, music, etc.), biological signals like EEG or ECG, the voltage across a charging capacitor, 

geophysical signals such as seismic vibrations, financial data like stock market prices, the flow rate of 

the Seine River, as well as images and videos. 

 

Figure 1.1: Random signal in time space 

  

1.1.1 Dimensional classification 

1D (single-dimensional) signal: A function that depends on a single independent variable or 

parameter, which could be time, space (e.g., an x-coordinate), concentration, or other quantities. It 

typically represents how a quantity varies along a single axis or parameter. 

Examples 

 Sound wave: The amplitude (volume) of a sound wave varies over time. 

 Stock prices: Stock prices fluctuate over time. 

 Electrocardiogram (ECG): An ECG measures the electrical activity of the heart over time. 

A 2D (two-dimensional) signal varies across two dimensions. Most commonly these dimensions 

are spatial (like the x and y positions within an image). 

Examples 

 Image: The brightness or color intensity of each pixel in an image varies based on its position 

along the x and y coordinates. 

 Geographic map: The elevation on a topographical map varies based on longitude and latitude 

coordinates. 

 Medical imaging (X-ray or MRI scan): Intensity values in a medical scan represent different tissue 

types and vary across both x and y dimensions. 

3D (Three-dimensional) signal: refers to a signal that varies across three dimensions, capturing 

data along three independent parameters. These parameters are typically spatial, but they could also 
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include time or other variables. In a 3D signal, information is organized in a three-dimensional space, 

allowing the representation of more complex data structures compared to 1D or 2D signals.  

Examples  

 Medical Imaging: Signals from MRI or CT scans, where the data represents a 3D model of the 

human body or an organ. 

 3D Video: A video that captures three-dimensional visual information, often used in virtual reality 

or stereoscopic displays. 

 Geospatial Data: Topographical maps or seismic data that represent the earth's surface or 

subsurface in three dimensions. 

1.1.2 Analog signal (continuous) 

 A signal that can take an infinite number of values and varies continuously over time.  

1.1.3 Digital signal 

A digital signal is a signal that varies discretely over time. It is said to be quantized. It consists of 

a sequence of 0s and 1s, called bits. It is referred to as binary. 

 

Figure 1.2: Analog signal and digital signal 

1.1.4  Digitization of an analog signal 

The importance of digital information processing systems is continuously increasing (radio, 

television, telephone, instrumentation, etc.). This choice is often justified by technical advantages such 

as high parameter stability, excellent result reproducibility, and enhanced functionalities. Since the 

external world is inherently "analog," a preliminary analog-to-digital conversion operation is necessary. 

Digitization: The process of transforming (or encoding) information into a sequence of bits. 

1.1.5 Analog-to-Digital Conversion 

The steps of analog-to-digital conversion can be grouped into two main steps: first, sampling the 

analog signal, and second, quantizing and encoding the sampled values into digital form. 

1.1.5.1 Sampling 

This step involves slicing the analog signal into small time intervals according to a well-defined 

period set by a clock. The amplitude (A) of the signal at the clock's pulse is used as the reference for 

this interval. This value is then encoded. If the signal is sampled at a frequency of 100 Hertz (for 

example), each time interval, called a period, is equal to 
1

 100
= 0.01 seconds, or 10 milliseconds. The 

sampling frequency (
1

 𝑇0
) must be sufficiently high to fully capture the signal.  
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Figure 1.3: Sampled Signal at 𝑇0 

1.1.5.2 Quantization and Encoding 

After sampling, the values are quantized by mapping them to discrete levels, each representing a 

range of signal amplitudes. These quantized values are then encoded into a digital format. Encoding 

involves representing the amplitude of the quantized signal in terms of binary digits, with each binary 

digit corresponding to a specific weight (e.g., 4, 2, 1 in a 3-bit system). For example, a signal with an 

amplitude of 7 volts (in decimal) would be converted into a 3-bit binary word (7 in decimal = 0111 in 

binary). 

 

Figure 1.4: Signal encoded on 3 bits 

Some basic signals that are useful for studying the properties of signal processing systems are described 

below. 

1.1.6 Discrete-Time Basic Signals 

1.1.6.1       Unit Impulse or Kronecker Delta 

 

This is a signal denoted as δ(k) such that: 

𝛿(𝑛) = {
1    𝑖𝑓 𝑛 = 0
0    𝑖𝑓 𝑛 ≠ 0

 

The shifted impulse, denoted as 𝛿(𝑘 − 𝑘), is defined as follows: 

𝛿(𝑛 − 𝑘) = {
1    𝑖𝑓 𝑛 = 𝑘
0    𝑖𝑓 𝑛 ≠ 𝑘
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1.1.6.2 Unit Step 

 

This is a signal denoted as 𝒖(𝒏) such that:   

𝑢(𝑛) = {
1    𝑖𝑓 𝑛 ≥ 0
0    𝑖𝑓 𝑛 < 0

 

It can be written as: 

𝑢(𝑛) = ∑𝛿(𝑛 − 𝑘)

+∞

𝑘=0

 

1.1.6.3 Causal Exponential Signal 

 

This is the signal such that: 

𝑥(𝑛) = 𝑒−𝑎𝑛𝑢(𝑛) 

Depending on whether 𝑎 > 0 or 𝑎 < 0, the exponential signal will converge to 0 or diverge to +∞. 

1.1.6.4 Causal Rectangular Signal of Duration N or Pulse 

This is the signal such that: 

𝑟𝑒𝑐𝑡𝑁(𝑛) = {
1    𝑖𝑓  0 ≤ 𝑛 ≤ 𝑁 − 1
0      𝑖𝑓        otherwise

 

1.1.7 Properties of Discrete-Time Signals  

1.1.7.1 Causality 

 

A signal is said to be causal when: 

𝑥(𝑛) = 0     ∀ 𝑛 < 0 

1.1.7.2  Energy 

 

The energy of a discrete-time signal 𝒙(𝒏) is defined as follows: 

𝐸𝑥 = ∑ |𝑥(𝑛)|2
+∞

𝑘=−∞

 

1.1.7.3 Average Power 

 

The average power of a signal 𝒙(𝒏) is defined as: 

𝑃𝑥 = lim
𝑁→∞

1

𝑁
∑ |𝑥(𝑛)|2

+
𝑁
2

𝑘=−
𝑁
2

 

If the energy 𝐸𝑥 is finite, then 𝑥(𝑛) is a finite-energy signal and 𝑃𝑥 = 0. If E is infinite, then 𝑃𝑥 

can be either finite or infinite. If 𝑃𝑥 is finite and non-zero, then 𝑥(𝑛) is a finite-power signal. 
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1.1.7.4  Instantaneous Power 

Instantaneous power is defined by: 

𝑷(𝒏) = |𝒙(𝒏)|𝟐 

1.1.7.5 Periodicity 

A signal 𝒙(𝒏) is periodic with period N if and only if  𝒙(𝒏 +𝑵) = 𝒙(𝒏). Otherwise, 𝒙(𝒏) is aperiodic. 

1.1.7.6 Symmetry 

A signal 𝒙(𝒏).  is symmetric or even if and only if 𝒙(−𝒏) = 𝒙(𝒏). A signal 𝒙(𝒏) is antisymmetric or odd 

if and only if 𝒙(−𝒏) = −𝒙(𝒏).  Every signal can be decomposed into the sum of an even signal and an 

odd signal. 

1.1.7.7 Autocorrelation 

The autocorrelation of a signal  𝒙(𝒏) is defined by: 

𝑅𝑥𝑥(𝑘) = ∑ 𝑥(𝑛)𝑥(𝑛 + 𝑘) = 𝑅𝑥𝑥(−𝑘)

+∞

𝑘=−∞

 

We have: |𝑅𝑥𝑥(𝑘)| ≤ : |𝑅𝑥𝑥(0)| = 𝐸 

1.1.7.8 Cross-correlation 

The cross-correlation of two signals 𝒙(𝒏) and 𝒚(𝒏) is defined by: 

𝑅𝑥𝑦(𝑘) = ∑ 𝑥(𝑛)𝑦(𝑛 + 𝑘) = 𝑅𝑥𝑦(−𝑘)

+∞

𝑘=−∞

 

1.1.7.9 Convolution 

The linear convolution between two signals 𝒙(𝒏)  and 𝒚(𝒏)  is defined by: 

𝑥(𝑘) ∗ 𝑦(𝑘) = ∑ 𝑥(𝑛)𝑦(𝑘 − 𝑛)

+∞

𝑛=−∞

 

It is noted that:  

𝑅𝑥𝑦(𝑘) = 𝑥(𝑘) ∗ 𝑦(−𝑘) 

1.2 Z-Transform 

The Z-transform is a widely used tool for studying digital signal processing systems. It plays a 

role analogous to that of the Laplace transform in continuous-time systems. 

The bilateral Z-transform of a discrete-time signal 𝑥(𝑛) is defined by: 

𝑍[𝑥(𝑛)] = 𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛
+∞

𝑛=−∞

 

Where z is a complex variable (𝑧𝜖₵) defined wherever this series converges. Since discrete signals 

are most often causal, the Z-transform (referred to as unilateral) is more commonly defined as: 

𝑍[𝑥(𝑛)] = 𝑋(𝑧) = ∑𝑥(𝑛)𝑧−𝑛
+∞

𝑛=0
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1.2.1  Examples of Z-Transform 

 

Example 1 

 Let the following discrete-time signal be: 

𝑥(𝑛) = 𝛿(𝑛) 

We have: 

𝑋(𝑧) = ∑𝑥(𝑛)𝑧−𝑛
+∞

𝑛=0

 

𝑋(𝑧) = 𝑧0    ∀ 𝑧𝜖₵ 

𝑋(𝑧) = 1       ∀ 𝑧𝜖₵ 

Example 2 

Let the following discrete-time signal be: 

𝑥(𝑛) = 𝛿(𝑛 − 𝑘) 

We have: 

𝑋(𝑧) = 𝑧−𝑘    ∀ 𝑧𝜖₵ 

Example 3 

Let the discrete-time unit step signal 𝑢(𝑛) be the following, we have: 

𝑈(𝑧) = ∑𝑢(𝑛)𝑧−𝑛
+∞

𝑛=0

= ∑𝑧−𝑛
+∞

𝑛=0

= ∑(𝑧−1)𝑛
+∞

𝑛=0

= 1 + 𝑧−1 + 𝑧−2 + 𝑧−3 + 𝑧−4 +⋯ 

It is a geometric series. 

When n approaches ∞, the geometric series becomes: 

𝑈(𝑧) =
1

1 − 𝑧−1
=

𝑧

𝑧 − 1
       𝑖𝑓 |𝑧−1| < 1 

Example 4 

Let the following discrete-time signal be: 

𝑥(𝑛) = 𝑎𝑛𝑢(𝑛) 

𝑋(𝑧) = ∑𝑥(𝑛)𝑧−𝑛 = ∑𝑎𝑛𝑧−𝑛 =

+∞

𝑛=0

+∞

𝑛=0

∑(𝑎𝑧−1)𝑛 =

+∞

𝑛=0

 

𝑋(𝑧) =
1

1 − 𝑎𝑧−1
=

𝑧

𝑧 − 𝑎
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1.2.2 Properties of the Z-Transform 

The Z-Transform of Discrete-Time sequence is given by: 

𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛
+∞

𝑛=−∞

 

The Z-Transform pair can be written as: 

𝑥(𝑛) ↔  𝑋(𝑧) 

The Z-Transform obeys the following properties: 

1.2.2.1 Linearity 

                                              If  𝑥1(𝑛) ↔  𝑋1(𝑧) and  𝑥2(𝑛) ↔  𝑋2(𝑧) 

                                                              Roc = R1                       Roc = R2 

Then,                     𝑎𝑥1(𝑛) + 𝑏𝑥2(𝑛) ↔ 𝑎𝑋1(𝑧) + 𝑏𝑋2(𝑧)  with Roc = 𝑅1 ∩ 𝑅2 

Proof 

𝑍𝑇[𝑎𝑥1(𝑛) + 𝑏𝑥2(𝑛)] = ∑ [𝑎𝑥1(𝑛) + 𝑏𝑥2(𝑛)]𝑧
−𝑛

+∞

𝑛=−∞

 

                                                         = ∑ 𝑎𝑥1(𝑛)𝑧
−𝑛

+∞

𝑛=−∞

+ ∑ 𝑏𝑥2(𝑛)𝑧
−𝑛

+∞

𝑛=−∞

 

                                                           = 𝑎 ∑ 𝑥1(𝑛)𝑧
−𝑛

+∞

𝑛=−∞

+ 𝑏 ∑ 𝑥2(𝑛)𝑧
−𝑛

+∞

𝑛=−∞

 

𝑍𝑇[𝑎𝑥1(𝑛) + 𝑏𝑥2(𝑛)] = 𝑎𝑋1(𝑧) + 𝑏𝑋2(𝑧) 

1.2.2.2 Time shifting 

If        𝑥(𝑛) ↔  𝑋(𝑧);  Roc = R1  

Then       𝑥(𝑛 − 𝑘) ↔ 𝑧−𝑘  𝑋(𝑧);  Roc = R1  

Proof 

𝑍𝑇[𝑥(𝑛 − 𝑘)] = ∑ 𝑥(𝑛 − 𝑘)𝑧−𝑛
+∞

𝑛=−∞

 

Let 𝑛 − 𝑘 = 𝑚 ⇒ 𝑛 = 𝑚 + 𝑘. Also, as 𝑛 → +∞ then 𝑚 → +∞,     

𝑍𝑇[𝑥(𝑛 − 𝑘)] = ∑ 𝑥(𝑛 − 𝑘)𝑧−𝑛
+∞

𝑛=−∞
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𝑍𝑇[𝑥(𝑛 − 𝑘)] = ∑ 𝑥(𝑚)𝑧−(𝑚+𝑘)
+∞

𝑚=−∞

 

𝑍𝑇[𝑥(𝑛 − 𝑘)] = ∑ 𝑥(𝑚)𝑧−𝑚𝑧−𝑘
+∞

𝑚=−∞

 

= 𝑧−𝑘𝑋(𝑧) 

1.2.2.3 Scaling in Z- Domain 

If        𝑥(𝑛) ↔  𝑋(𝑧);  Roc = 𝑅 

Then 𝑎𝑛𝑥(𝑛) ↔  𝑋 (
𝑧

𝑎
);  Roc = |𝑎|𝑅 

Proof 

𝑍𝑇[𝑎𝑛𝑥(𝑛)] = ∑ 𝑎𝑛𝑥(𝑛)𝑧−𝑛 = ∑ 𝑥(𝑛)(
𝑧

𝑎
)−𝑛 = 𝑋(

𝑧

𝑎
)

+∞

𝑛=−∞

+∞

𝑚=−∞

 

If ROC is 𝛼 < |𝑧| < 𝛽, then the new ROC will be |𝑎|𝛼 < |𝑧| < |𝑎|𝛽 

1.2.2.4 Time reversal 

If        𝑥(𝑛) ↔  𝑋(𝑧);  Roc = 𝑅 

Then 𝑥(−𝑛) ↔  𝑋 (
1

𝑧
);  Roc =

1

𝑅
 

Proof 

𝑍𝑇[𝑥(−𝑛)] = ∑ 𝑥(−𝑛)𝑧−𝑛+∞
𝑛=−∞  ; let −𝑛 = 𝑚 ⇒ 𝐴𝑠 𝑛 → +∞, then 𝑚 → −∞, 

𝑍𝑇[𝑥(−𝑛)] = ∑ 𝑥(𝑚)𝑧𝑚
+∞

𝑚=−∞

 

𝑍𝑇[𝑥(−𝑛)] = ∑ 𝑥(𝑚)(𝑧−1)−𝑚
+∞

𝑚=−∞

 

= 𝑋(𝑧−1) = 𝑋 (
1

𝑧
) 

If ROC is 𝑎 < |𝑧| < 𝑏, then the new ROC will be 𝑎 < |
1

𝑧
| < 𝑏 ⇒ 

1

𝑏
< |𝑧| <

1

𝑎
 

1.2.2.5 Differentiation in Z- Domain 

If        𝑥(𝑛) ↔  𝑋(𝑧);  Roc = 𝑅 

Then 𝑛𝑥(𝑛) ↔  −𝑧
𝑑

𝑑𝑧
𝑋(𝑧);  Roc = 𝑅 

Proof                                                    𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛+∞
𝑛=−∞  
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𝑑

𝑑𝑧
[𝑋(𝑧)] = ∑ 𝑥(𝑛)

𝑑

𝑑𝑧
(𝑧−𝑛)

+∞

𝑛=−∞

 

𝑑

𝑑𝑧
[𝑋(𝑧)] = ∑ 𝑥(𝑛)(−𝑛. 𝑧−𝑛−1)

+∞

𝑛=−∞

 

= −
1

𝑧
∑ 𝑛. 𝑥(𝑛)𝑧−𝑛
+∞

𝑛=−∞

 

−𝑧
𝑑

𝑑𝑧
[𝑋(𝑧)] = ∑ [𝑛. 𝑥(𝑛)]𝑧−𝑛

+∞

𝑛=−∞

 

−𝑧
𝑑

𝑑𝑧
[𝑋(𝑧)] = 𝑍𝑇[𝑛. 𝑥(𝑛)] 

1.2.2.6 Convolution property 

                                              If  𝑥1(𝑛) ↔  𝑋1(𝑧); Roc = R1  

                                                    𝑥2(𝑛) ↔  𝑋2(𝑧); Roc = R2  

                                      Then  𝑥1(𝑛) ∗ 𝑥2(𝑛) ↔ 𝑋1(𝑧) × 𝑋2(𝑧);  Roc = 𝑅1 ∩ 𝑅2 

                                (Convolution in time domain↔ multiplication in Z- Domain) 

Proof 

Convolution of two signals 𝑥1(𝑛) and 𝑥2(𝑛) is given by: 

𝑥1(𝑛) ∗ 𝑥2(𝑛) = ∑ 𝑥1(𝑘)𝑥2(𝑛 − 𝑘)

+∞

𝑛=−∞

 

The Z-transform of convolution is given by: 

𝑍𝑇[𝑥1(𝑛) ∗ 𝑥2(𝑛)] = ∑ [ ∑ 𝑥1(𝑘)𝑥2(𝑛 − 𝑘)

+∞

𝑘=−∞

] 𝑧−𝑛
+∞

𝑛=−∞

 

Interchanging the order of summation  

𝑍𝑇[𝑥1(𝑛) ∗ 𝑥2(𝑛)] = ∑ 𝑥1(𝑘) [ ∑ 𝑥2(𝑛 − 𝑘)𝑧
−𝑛

+∞

𝑛=−∞

]

+∞

𝑘=−∞

 

If        𝑥2(𝑛) ↔ 𝑋2(𝑧); 

Then       𝑥2(𝑛 − 𝑘) ↔ 𝑧−𝑘 𝑋2(𝑧); 

𝑍𝑇[𝑥1(𝑛) ∗ 𝑥2(𝑛)] = ∑ 𝑥1(𝑘) 𝑋2(𝑧)𝑧
−𝑘

+∞

𝑘=−∞
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                                                                           =𝑋2(𝑧)∑ 𝑥1(𝑘) 𝑧
−𝑘+∞

𝑘=−∞  

                                                                          = 𝑋1(𝑧). 𝑋2(𝑧) 

1.2.3  Inverse Z-Transform 

The general idea of the inverse Z-transform is to decompose a complex function 𝑋(𝑧) into simpler 

components for which the inverse Z-transform is known. Using the linearity property of the Z-transform, 

the original time-domain signal can be reconstructed by summing the individual time-domain signals 

that correspond to each of the elementary components in the decomposition. Assuming: 𝛼 < |𝑧| < 𝛽 

𝑋(𝑧) = 𝛼1𝑋1(𝑧) + 𝛼2𝑋2(𝑧) +⋯+ 𝛼𝐿𝑋𝐿(𝑧) 

We obtain: 

𝑥(𝑛) = 𝛼1𝑥1(𝑛) + 𝛼2𝑥2(𝑛) +⋯+ 𝛼𝐿𝑥𝐿(𝑛) 

The class of rational Z-transforms can always be expressed according to this principle. We will then 

write: 

𝑋(𝑧) = 𝛼1
𝑧

𝑧 − 𝑝1
+ 𝛼2

𝑧

𝑧 − 𝑝2
+⋯ 

We will then have, by applying the inverse Z-transform: 

𝑥(𝑛) = 𝛼1𝑝1
𝑛 + 𝛼2𝑝2

𝑛 +⋯ 

The table below summarizes the Z-transforms and inverse Z-transforms of the most commonly used 

functions in signal processing. 

Table 1.1: Z-Transforms and Inverse Z-Transforms of Common Functions 

𝑥(𝑛) 𝑋(𝑧) 

𝛿(𝑛) 1 

𝛿(𝑛 − 𝑘) 𝑧−𝑘 

𝑢(𝑛) 
𝑧

𝑧 − 1
 

𝑛 
𝑧

(𝑧 − 1)2
 

𝑎𝑛 
𝑧

𝑧 − 𝑎
 

𝑒−𝑎𝑛 
𝑧

𝑧 − 𝑒−𝑎
 

𝑠𝑖𝑛(𝜔0𝑛) 

 

𝑧. 𝑠𝑖𝑛(𝜔0)

𝑧2 − 2𝑧𝑐𝑜𝑠(𝜔0) + 1
 

𝑐𝑜𝑠(𝜔0𝑛) 
𝑧. (𝑧 − 𝑐𝑜𝑠(𝜔0))

𝑧2 − 2𝑧𝑐𝑜𝑠(𝜔0) + 1
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1.3 Digital Filtering 

A digital filter is a system that processes discrete-time signals by applying mathematical 

operations to modify or enhance certain aspects of the signal. It operates on sequences of data (e.g., 

audio or sensor data) and is characterized by its transmittance function or transfer function in the Z-

domain, which describes the relationship between the input and output signals. 

 Examples of filtering are given below: 

Noise reduction for radio signals, sensor-derived images, or biomedical signals (ECG, EEG, 

EMG, etc.). 

  Modification of certain frequency regions in an audio signal or image. 

 Restriction to a predefined frequency band. 

1.3.1 Transmittance in Z of a Digital Filter: 

Let a system, which takes an input sequence 𝑥(𝑛) and produces an output sequence 𝑦(𝑛), be 

represented as: 

Figure 1.5: Representation of an Input-Output Relationship in a Discrete-Time System 

Let X(z) and Y(z) be the Z-transforms of the input and output sequences. The transmittance  

T(z) of the filter is then defined by: 

T(z) =
Y(z)

X(z)
 

Since the Z-transforms X(z) and Y(z)  are polynomials containing negative powers of z, the 

transmittance will be a ratio of two polynomials in negative powers of z. 

For example, let's find the transmittance of a digital high-pass filter that responds to a step input in the 

same way as an analog filter with a time constant τ=10 ms, and therefore a cutoff frequency of 𝑓𝑐 =
1

2𝜋
= 15.9 Hz:  

 

 

 

 

Figure 1.6: Step Response of an Analog High-Pass Filter 

𝑥(0), 𝑥(1), 𝑥(2)…. 

  Digital filter 

    𝑦(0), 𝑦(1), 𝑦(2)…. 

x(t) = 1 
y(t) = 1.e-100t 

1 

t t 

Analog High-Pass Filter 
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The equivalent digital filter would exhibit the following behavior: 

Figure 1.7: Step Response of a Digital High-Pass Filter 

If the signal is sampled at F0 = 1 KHz, which corresponds to T0 = 1 ms, then: X(z) =
𝑧

𝑧−1
   and  

Y(z) =
𝑧

𝑧−𝑘
 with k = e−100T0 = 0.905 

We can deduce the transmittance of the filter as: 

T(z) =
Y(z)

X(z)
=

𝑧 − 1

𝑧 − 0.905
 

This simple example illustrates how easy it is to find the transmittance of a digital filter that 

produces a particular output in response to a given input. This technique, used to synthesize 

sophisticated digital filters, is called the impulse or step response identification method. 

1.3.2 Algorithm for calculating  𝐲(𝐧) 

The system thus uses the previous p output samples and the previous q input samples, plus the 

current input x(n), to calculate the output at time t = nT0. 

The algorithm allows us to calculate the value of the output sample yny_nyn based on the previous 

input and output samples. The most general digital filter can be described by a calculation algorithm of 

the following form: 

𝑦(𝑛) = 𝑎1𝑦(𝑛 − 1) + 𝑎2𝑦(𝑛 − 2) +⋯+ 𝑎𝑝𝑦(𝑛 − 𝑝) + 𝑏0𝑥(𝑛) + 𝑏1𝑥(𝑛 − 1) +⋯+ 𝑏𝑞𝑥(𝑛 − 𝑞) 

Depending on the form of the algorithm, there are two main types of filters, each with its specific 

properties: 

A. Filters where the output depends only on the input and not on previous outputs: 

 Their response to an impulse eventually settles to zero after a certain time. 

 These are called non-recursive filters or Finite Impulse Response (FIR) filters. 

 They have no direct analog equivalent. 

Example 

 Moving average filter y(n) =
𝑥(𝑛)+𝑥(𝑛−1)+𝑥(𝑛−2)

3
. 

B. Filters where the output depends on both the current and previous inputs and outputs: 

 Their response to an impulse decay to zero only after an infinite amount of time.  

x(t) = 1 y(nTe) = 1.e-100nT0 

1 

t t 

Digital High-Pass Filter 
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 These are called recursive filters or Infinite Impulse Response (IIR) filters. 

Example 

 First-order low-pass filter 𝑦(𝑛) = 0.5. 𝑦(𝑛 − 1) + 0.25. [𝑥(𝑛) + 𝑥(𝑛 − 1)].  

1.3.3 Transition from the Algorithm to T(z) 

The algorithm 

𝑦(𝑛) = 𝑎1𝑦(𝑛 − 1) + 𝑎2𝑦(𝑛 − 2) + 𝑎3𝑦(𝑛 − 3) + ⋯+ 𝑎𝑝𝑦(𝑛 − 𝑝) + 𝑏0𝑥(𝑛) + 𝑏1𝑥(𝑛 − 1)

+ 𝑏2𝑥(𝑛 − 2) + ⋯+ 𝑎𝑞𝑥(𝑛 − 𝑞) 

By applying the Z-transform, we obtain: 

𝑌(𝑧) = 𝑎1𝑌(𝑧)𝑧
−1 + 𝑎2𝑌(𝑧)𝑧

−2 + 𝑎3𝑌(𝑧)𝑧
−3 +⋯+ 𝑎𝑝𝑌(𝑧)𝑧

−𝑝 + 𝑏0𝑋(𝑧) + 𝑏1𝑋(𝑧)𝑧
−1

+ 𝑏2𝑋(𝑧)𝑧
−2 +⋯+ 𝑏𝑞𝑋(𝑧)𝑧

−𝑞  

𝑌(𝑧)(1 − 𝑎1𝑧
−1 − 𝑎2𝑧

−2 −⋯− 𝑎𝑝𝑧
−𝑝) = 𝑋(𝑧)(𝑏0 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2 +⋯+ 𝑏𝑞𝑧

−𝑞) 

Z-transmittance of the filter: 

T(z) =
Y(z)

X(z)
=
b0 + b1z

−1 + b2z
−2 +⋯+ bqz

−q

1 − a1z−1 − a2z−2 −⋯− apz−p
 

=
∑ biz

−iq
i=0

1 − ∑ aiz−i
p
i=1

 

Example 

Moving average filter over 4 values 

The algorithm 

𝑌(𝑛) =
𝑥(𝑛) + 𝑥(𝑛 − 1) + 𝑥(𝑛 − 2) + 𝑥(𝑛 − 3)

4
 

                        = 0.25(𝑥(𝑛) + 𝑥(𝑛 − 1) + 𝑥(𝑛 − 2) + 𝑥(𝑛 − 3)). 

By applying the Z-transform, we obtain: 

𝑌(𝑧) = 0.25(X(z) + X(z)𝑧−1 + X(z)𝑧−2 + X(z)𝑧−3) 

= 0.25(1 + 𝑧−1 + 𝑧−2 + 𝑧−3)X(z) 

𝑇(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
= 0.25(1 + 𝑧−1 + 𝑧−2 + 𝑧−3) 

Z-transmittance of the filter: 

𝑇(𝑧) =
1 + 𝑧−1 + 𝑧−2 + 𝑧−3

4
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1.3.4  Transition from T(z) to the algorithm 

 

Example 

We aim to find the calculation algorithm of the filter characterized by the following transmittance 

T(z):  

 

 

The transmittance is the ratio between the Z-transform of the output and the Z-transform of the input: 

𝑇(𝑧) =
1 + 2𝑧−1 + 𝑧−3

2 + 𝑧−1
=
𝑌(𝑧)

𝑋(𝑧)
 

                                                        𝑌(𝑧)(2 + 𝑧−1) = 𝑋(𝑧)(1 + 2𝑧−1 + 𝑧−3) 

                                                       2𝑌(𝑧) + 𝑌(𝑧)𝑧−1 = 𝑋(𝑧) + 2𝑋(𝑧)𝑧−1 + 𝑋(𝑧)𝑧−3 

𝑌(𝑧) = −0.5𝑌(𝑧)𝑧−1 + 0.5𝑋(𝑧) + 𝑋(𝑧)𝑧−1 + 0.5𝑋(𝑧)𝑧−3 

By using the inverse Z-transform, we obtain: 

𝑦(𝑛) = −0.5𝑦(𝑛 − 1) + 0.5𝑥(𝑛) + 𝑥(𝑛 − 1) + 0.5𝑥(𝑛 − 3) 

1.3.5 Stability of a digital filter 

As with analog filters, it is possible to predict the stability or instability of the corresponding 

physical system from the transmittance. 

To determine if a continuous analog system with transmittance 𝑇(𝑝) is stable, the poles are 

calculated as the values of p that nullify the denominator. The system is stable if the poles are negative 

or complex with a negative real part. If these poles are plotted in the complex plane, they are all located 

in the left half-plane. 

This stability criterion also applies to the transmittancesT∗(p) of sampled systems. A sampled 

system with transmittance T∗(p) is stable if all its poles are negative or complex with a negative real 

part. 

Since most work with sampled systems is done using transmittances in Z, it is useful to examine 

the position of the poles 𝑧𝑖 in the plane for a stable system. We know that z and p are related by the 

variable change: 𝑧 = 𝑒𝑇𝑒𝑝 

A stable system will have poles 𝑝𝑖 = 𝑎 + 𝑗𝑏𝑖 , with 𝑎𝑖 < 0. 

The corresponding point 𝑧𝑖 = 𝑒
𝑇𝑒𝑝𝑖 = 𝑒𝑇𝑒(𝑎+𝑗𝑏𝑖) = 𝑒𝑇𝑒𝑎𝑖(𝑐𝑜𝑠𝑏𝑖 + 𝑗𝑠𝑖𝑛𝑏𝑖) is such that the magnitude of 

the complex number 𝑒𝑇𝑒𝑎𝑖   satisfies |𝑧𝑖| < 1. 

   

𝑇(𝑧) =
1 + 2𝑧−1 + 𝑧−3

2 + 𝑧−1
 𝑥(0), 𝑥(1), 𝑥(2)…. 𝑦(0), 𝑦(1), 𝑦(2)…. 
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We deduce a graphical stability criterion for a sampled system: A sampled system with transmittance 

T(z)  is stable if all its poles are inside the unit circle. 

 

Figure 1.8: Stability criterion of a digital system 

1.3.6 Representation of a Digital Filter 

A digital filter can be represented using several types of specifications, including: 

1.3.6.1 Z-Transfer Function 

This is the most common representation. It links the input and output in the Z-plane as 𝑌(𝑧) =

𝐻(𝑧). 𝑋(𝑧). Going forward, we will assume:  

𝐻(𝑧) =
𝑁(𝑧)

𝐷(𝑧)
=

∑ 𝑏𝑖𝑧
−𝑖𝑁

𝑖=0

1 + ∑ 𝑎𝑖𝑧−𝑖
𝑁
𝑖=1

 

Where 𝑁(𝑧) is the numerator polynomial of the transfer function, and 𝐷(𝑧) is its denominator. Here, N 

represents the filter's order. If 𝐻(𝑧) has poles, the filter is called an IIR filter (Infinite Impulse Response). 

If 𝑁(𝑧) = 1, the filter is referred to as an all-pole filter. In the case where 𝐷(𝑧) = 1, the filter only has 

zeros, corresponding to FIR filters (Finite Impulse Response). 

This type of filter has no equivalent in analog filtering, and we will see that its properties make it a 

widely used function in digital signal processing. 

1.3.6.2 Impulse Response 

The impulse response is the inverse Z-transform of 𝐻(𝑧). 

𝐻(𝑧) = ∑ℎ(𝑛)𝑧−𝑛
∞

𝑛=0

 

As in analog filtering, the output of a filter 𝑦(𝑛𝑇) is the result of the convolution of the input signal, 

represented in the time domain 𝑥(𝑛𝑇), with the impulse response of the filter ℎ(𝑛𝑇). Thus, we have 

𝑦(𝑛𝑇) = 𝑥(𝑛𝑇) ∗ ℎ(𝑛𝑇), or, ignoring the sampling period T: 

𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛) 

                     = ∑𝑥(𝑘)ℎ(𝑛 − 𝑘)

∞

𝑘=0

 

                      = ∑ 𝑥(𝑛 − 𝑘)ℎ(𝑘)∞
𝑘=0 , 
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In the case where 𝑥(𝑛) is an impulse 𝛿(𝑛), we indeed obtain 𝑦(𝑛) = ℎ(𝑛). Depending on whether ℎ(𝑛) 

has infinite or finite support, we will obtain the respective types of filters: IIR (Infinite Impulse 

Response) and FIR (Finite Impulse Response).  

1.3.6.3 Difference Equation 

An inverse Z-transform of the equation from the first representation leads to the following form: 

𝑦(𝑛) =∑𝑏𝑖𝑥(𝑛 − 𝑖)

𝑁

𝑖=0

−∑𝑎𝑖𝑦(𝑛 − 𝑖)

𝑁

𝑖=1

 

Here, we identify two distinct parts: one that depends on the current and previous values of the input 

𝑥(𝑛), and another that depends on the previous values of the output 𝑦(𝑛). Depending on whether the 

coefficients 𝑎𝑖 are non-zero or zero, we refer to these as recursive filters or non-recursive filters. 

1.3.7 Specifications of a Digital Filter 

Before a digital filter is designed and implemented, its specifications need to be defined. A filter 

must allow certain frequencies to pass while attenuating (or even eliminating) others. Therefore, we 

need to be able to represent these constraints. There are four basic types of filters: 

1.3.7.1 Low-pass filters 

 allow frequencies below a cutoff frequency 𝑓𝑐  to pass and block those above it (see Figure 1.9.a). 

1.3.7.2 High-pass filters  

block frequencies below a cutoff frequency 𝑓𝑐  and allow those above it to pass (see Figure 1.9.b). 

1.3.7.3 Band-pass filters  

allow frequencies around a central frequency 𝑓0(or between 𝑓𝑐1  and 𝑓𝑐2) to pass and block others (see 

Figure 1.9.c). 

1.3.7.4 Band-stop filters  

block frequencies around a central frequency 𝑓0(or between 𝑓𝑐1  and 𝑓𝑐2) and allow others to pass (see 

Figure 1.9.d). 

 

Figure 1.9:  Ideal Frequency Responses of the 4 Basic Filters 
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The filters shown in Figure 1.9 are ideal. In practice, however, filters cannot have discontinuities. 

The transition between passbands and stopbands occurs through so-called 'transition zones,' where the 

width of the zone determines the filter's selectivity. Additionally, the passbands and stopbands are not 

perfectly flat; they exhibit ripples. The amplitude of these ripples is described by the ripple parameter 

in the passband and the attenuation level in the stopband. 

 

Figure 1.10:  Ideal and actual frequency response of lowpass filters 
 

1.4 Classification of Digital Filters 

Digital filters can be classified based on several criteria: 

 Impulse Response Length: This classification distinguishes between two types of filters: IIR 

(Infinite Impulse Response) and FIR (Finite Impulse Response). 

 Structure or Representation: This classification differentiates between recursive and non-

recursive filters. 

It is important to note that, with the exception of specific cases, recursive filters are typically equivalent 

to IIR filters, while non-recursive filters correspond to FIR filters. 

1.4.1 Finite Impulse Response (FIR) Digital Filters 

FIR filters cannot be derived from analog filters. However, they are widely used because they 

have unique properties (linear phase, stability, flexibility). The equations below show the transfer 

function in the z-domain and the corresponding difference equation for the general form of an FIR filter. 

𝐻(𝑧) = ∑ℎ(𝑛)𝑧−𝑖
𝑁

𝑖=0

 

𝑦(𝑛) =∑𝑏𝑖𝑥(𝑛 − 𝑖)

𝑁

𝑖=0

=∑ℎ(𝑖)𝑥(𝑛 − 𝑖)

𝑁

𝑖=0
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It is noted that the coefficients 𝑏𝑖 of the filter are also the values of the impulse response ℎ(𝑘), 

which is therefore limited in time. 

𝐻(𝑧) = ∑𝑏𝑖𝑧
−𝑖 ⟺

𝑁

𝑖=0

ℎ(𝑛) =∑𝑏𝑖𝛿(𝑛 − 𝑖)

𝑁

𝑖=0

 

ℎ(𝑛) = {
𝑏𝑛    𝑡𝑜 0 ≤ 𝑛 ≤ 𝑁 
0           otherwise

 

1.4.1.1 Characteristics of FIR Filters 

The main characteristics of FIR filters are: 

 A transition band that will always be wider than that of an IIR filter with the same number of 

coefficients; 

 Synthesis methods allowing any frequency response to be derived; 

 Inherent stability (∑ |ℎ(𝑛)| < ∞𝑁
𝑛=0 ); 

 Greater numerical stability than IIR filters; 

 A phase that can be exactly linear, therefore no harmonic distortion in the signal; 

 Easier implementation in a digital signal processing system. 

1.4.1.2 Structure of FIR Filters 

Although there are several practical implementations for FIR filters, the direct form structure and its 

transposed counterpart are among the most commonly used. 

 Direct Form FIR Filter  

The direct form FIR filter structure calculates the output 𝑦(𝑛) as a weighted sum of the current and past 

input values, where 𝑥(𝑛) is the input signal at time n, and the 𝑧−1 blocks represent unit delays, each 

shifting the input by one sample. The filter coefficients 𝑏0, 𝑏1, 𝑏0, 𝑏0,…,𝑏𝑞  are applied to the delayed 

input samples, and the output is obtained by summing the products of these delayed inputs and their 

corresponding coefficients. The difference equation for the filter is: 

𝑦(𝑛) =∑𝑏𝑖𝑥(𝑛 − 𝑖)

𝑞

𝑖=0

= 𝑏0𝑥(𝑛) + 𝑏1𝑥(𝑛 − 1) + ⋯+ 𝑏𝑞−1𝑥(𝑛 − (𝑞 − 1)) + 𝑏𝑞𝑥(𝑛 − 𝑞) 

In this form, all designed filter coefficients are typically intended for implementation in the direct form 

structure. The direct form structure and the associated difference equation are often recommended for 

fixed-point implementations due to the use of a single accumulator, which helps to mitigate issues 

related to limited precision in such systems. 
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Figure 1.11: Direct Structure 

 Direct Form Transposed FIR Filter 

The Figure 1.12 represents a Direct Form Transposed FIR filter structure, which is commonly 

recommended due to its superior numerical precision, particularly in floating-point arithmetic. This 

advantage arises because floating-point addition is performed on numbers of similar magnitude, 

minimizing the undesirable effects of numerical damping. 

Mathematically, the output can be described by the following set of recursive equations: 

𝑦(𝑛) = 𝑏0𝑥(𝑛) + 𝜔1(𝑛 − 1) 

𝜔1(𝑛) = 𝑏1𝑥(𝑛) + 𝜔2(𝑛 − 1) 

𝜔2(𝑛) = 𝑏2𝑥(𝑛) + 𝜔3(𝑛 − 1) 

⋮   =     ⋮         +          ⋮ 

                                                                𝜔𝑞(𝑛) = 𝑏𝑞𝑥(𝑛) 

These equations describe the intermediate variables 𝜔𝑖(𝑛), which represent accumulated products of 

the input signals and the corresponding filter coefficients. As the input signal 𝑥(𝑛) propagates through 

the structure, each 𝜔𝑖(𝑛) contributes to the final output signal 𝑦(𝑛), resulting in a weighted sum of the 

current and delayed input values. 

 

Figure 1.12 : Transposed Structure 

1.4.2 Advantages of FIR Filters  

 Linear Phase: FIR filters can be easily designed to have a linear phase. This means that no 

phase distortion is introduced into the signal being filtered, as all frequencies are shifted in time 

by the same amount, thus maintaining their relative harmonic relationships (i.e., constant group 
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and phase delay). This is not the case with IIR filters, which have a non-linear phase 

characteristic. 

 Stability: Since FIR filters do not use previous output values to compute their current output 

(i.e., they have no feedback), they can never become unstable for any type of input signal. This 

gives them a distinct advantage over IIR filters. 

 Arbitrary Frequency Response: The ability to design an FIR (Finite Impulse Response) filter 

with an arbitrary frequency response is a significant advantage for engineers and designers. The 

Parks-McClellan algorithm is a widely used technique for creating FIR filters that can achieve 

specific magnitude responses over a defined frequency range.  

This algorithm optimally designs the filter by minimizing the maximum error between the 

desired and actual frequency responses, allowing for greater flexibility in meeting design 

specifications. 

 Fixed Point Performance: The effects of quantization are less severe in FIR filters compared 

to IIR filters. 

1.4.3 Disadvantages of FIR Filters 

 High Computational and Memory Requirement: FIR filters usually require many more 

coefficients to achieve a sharp cut-off than their IIR counterparts. Consequently, they require 

significantly more memory and a higher number of multiply-and-accumulate operations. 

However, modern microcontroller architectures based on Arm's Cortex-M cores now include 

DSP hardware support via SIMD (Single Instruction, Multiple Data) that significantly speeds up 

the filtering operation. 

 Higher Latency: The higher number of coefficients generally makes a linear phase FIR filter 

less suitable than an IIR filter for fast, high-throughput applications. This can be problematic for 

real-time closed-loop control applications, where a linear phase FIR filter may have too much 

group delay to ensure loop stability. 

 Minimum Phase Filters: To overcome the inherent N/2 latency (group delay) in a linear filter, 

one can use a minimum phase filter, where any zeros outside the unit circle are moved to their 

conjugate reciprocal locations inside the unit circle. The result of this zero flipping is that the 

magnitude spectrum will be identical to the original filter, and the phase will be nonlinear. Most 

importantly, the latency will be reduced from N/2 to something much smaller (though non-

constant), making it more suitable for real-time control applications. For applications where 

phase is less important, this may seem ideal. However, the difficulty arises in the numerical 

accuracy of the root-finding algorithm when dealing with large polynomials. Therefore, orders 

of 50 or 60 should be considered a maximum when using this approach. Although other methods 

exist (e.g., the Complex Cepstrum), transforming higher-order linear phase FIR filters to their 

minimum phase counterparts remains a challenging task. 

 No Analog Equivalent: Using the Bilinear Transform or matched z-transform (s-z mapping), 

an analog filter can be easily transformed into an equivalent IIR filter. However, this is not 

possible for an FIR filter, as it has no analog equivalent. 
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1.4.4 FIR Filter Design 

FIR filters are only realizable in the discrete domain. Consequently, their design methods are not 

derived from analog filters. There are three main methods of synthesis: 

 The Windowing Method: This involves applying a window of size N to the equivalent ideal 

filter. 

 The Frequency Sampling Method: This method uses the inverse Discrete Fourier Transform 

(IDFT) from a discrete function that represents the filter and is defined in the frequency domain.  

 Optimization Methods: These focus on minimizing an error criterion between the actual filter 

response and the ideal filter. The most commonly used is the Parks and McClellan method, 

which reformulates the filter design problem as a polynomial approximation. 

1.4.4.1 FIR Filter Design by Windowing 

We will explain the window method by using an example. Suppose we want to design a lowpass 

filter with a cutoff frequency of 𝜔𝑐, i.e., the desired frequency response will be: 

𝐻𝑑(𝜔) = {
1      |𝜔| < 𝜔𝑐
0      𝑒𝑙𝑠𝑒        

…… . . (∗)    

To find the equivalent time-domain representation, we calculate the inverse discrete-time Fourier 

transform: 

ℎ𝑑(𝑛) =
1

2𝜋
∫ 𝐻𝑑(𝜔)𝑒

𝑖𝜔𝑛𝑑𝜔……(∗∗)
+𝜋

−𝜋
  

Substituting Equation (∗) into Equation (∗∗), we obtain: 

ℎ𝑑(𝑛) =
1

2𝜋
∫ 𝐻𝑑(𝜔)𝑒

𝑖𝜔𝑛𝑑𝜔
+𝜔𝑐

−𝜔𝑐

=
𝑠𝑖𝑛(𝑛𝜔𝑐)

𝑛𝜋
…… . (∗∗∗) 

Equation (∗∗∗) for 𝜔𝑐 =
𝜋

4
  is shown in Figure 1.13: 
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Figure 1.13: Impulse response of an ideal lowpass filter with 𝜔𝑐=
𝜋

4
 

Figure 1.13 shows that ℎ𝑑(𝑛) needs an infinite number of input samples to perform filtering and 

that the system is not a causal system. 

The obvious solution will be to truncate the impulse response and use, for example, only 21 samples of 

the input and assume other coefficients to be zero. Intuition suggests that, as the number of samples 

increases, the truncated impulse response will be closer to the ideal impulse response in Figure 1.13 and 

therefore the frequency response of the achieved filter will be closer to Equation (∗). On the other hand, 

as we increase the number of samples, more hardware will be required. If we choose to use only 21 taps 

of the ideal response, there will be three options which are shown in Figures 1.14 to Figures 1.16. The 

first option is shown in Figure 1.14. This impulse response corresponds to a non-causal system and 

cannot be used.  
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Figure 1.14: Truncated impulse response: linear-phase, but non-causal 

 The next option is shown in Figure 1.15 which, despite being causal, does not have a linear-

phase response (the most important property of an FIR system). 

 

Figure 1.15: Truncated impulse response: causal, but nonlinear-phase 

The last option is shown in Figure 1.16. This system is both causal and linear phase. The only 

drawback to this system is its delay which is 
𝑀−1

2
 samples. In other words, in response to an impulse at 

𝑛 = 0, the system will not react until almost 𝑛 =
𝑀−1

2
. This delay may cause problems in some 

applications. 
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Figure 1.16: Truncated impulse response: causal and linear phase 

Truncation of the impulse response is equivalent to multiplying ℎ𝑑(n) (or its shifted version) by 

a rectangular window, 𝜔(n) which is equal to one for n = 1, … ,M − 1 and zero otherwise. Therefore, 

considering the applied shift, we obtain the impulse response of the designed filter: 

ℎ(n) = ℎ𝑑 [𝑛 −
𝑀 − 1

2
]𝜔(n) 

Clearly the spectrum of the rectangular window will cause the filter response to deviate from the 

ideal response in Equation (∗). Figure (∗∗) compares the response of the designed filter with that of the 

ideal one. This figure shows that, unlike the ideal filter, the designed filter has a smoother transition 

from the passband to the stopband. Moreover, there are some ripples in both the passband and stopband 

of 𝐻(𝜔).How can we make the transition band sharper? How can we make the ripples smaller? What 

other options are there to be used instead of a rectangular window?  

 

Figure 1.17: Frequency response of the filter designed by a rectangular window 
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Summary 

 To design a digital filter, we need to find the coefficients, 𝑎𝑘 and 𝑏𝑘 .  

  An FIR filter is a special case of Equation 𝐻(𝑧) =
∑ 𝑏𝑘𝑧

−𝑘𝑀−1
𝑘=0

∑ 𝑎𝑘𝑧
−𝑘𝑁−1

𝑘=0

, where 𝑎0 = 1 and 𝑎𝑘 = 0  for 

k = 1,… , N − 1.  

 Stability and linear-phase response are the two most important advantages of an FIR filter over 

an IIR filter.   

 A linear-phase frequency response corresponds to a constant delay.  

 Truncation of the impulse response is equivalent to multiplying ℎ𝑑(n) by a rectangular window, 

𝜔(n), which is equal to one for n = 1,… ,M − 1 and zero otherwise.  

 A wider transition band and ripples in the passband and stopband are the most important 

differences between the ideal filters and those designed by window method. 

1.4.4.2 Frequency Sampling Method 

The frequency sampling method for filter design is based on the frequency response of an ideal 

continuous filter 𝐻(𝑓), for which the exact mathematical formula may be unknown. As a result, we 

cannot directly compute the time-domain impulse response ℎ(𝑛)  through the inverse Fourier transform 

of 𝐻(𝑓). Instead, we approximate the desired response using a set of sampled frequency values and 

apply the inverse Discrete Fourier Transform (IDFT) to obtain ℎ(𝑛). This means we "sample" the 

desired response in the frequency domain, obtaining N points from this frequency response, which 

correspond to N points of the equivalent time-domain response obtained through the inverse DFT as 

follows: 

We begin by sampling 𝐻(𝑓): 𝐻(𝑘) = 𝐻(𝑘)|𝑘
𝑁

  𝑘 =
−(𝑁−1)

2
 𝑡𝑜 

(𝑁−1)

2
 

then the inverse DFT is applied:  ℎ(𝑛) =
1

𝑁
∑ 𝐻(𝑘)𝑒

2𝜋𝑗𝑘𝑛

𝑁
 𝑘=

(𝑁−1)

2

 𝑘=
−(𝑁−1)

2

 

This synthesis method is very simple and allows the realization of any filter shape (something that 

cannot be achieved with the previous method). However, this synthesis method only guarantees the 

frequency points 𝐻(𝑘). Between these points, the value of 𝐻(𝑓) is not controlled, and oscillations may 

occur that are not evenly distributed, with the maximum error between the ideal response and the 

obtained response typically occurring around the transition band. To obtain the frequency response of 

the final filter, one can apply a DFT to the obtained impulse response ℎ(𝑛) of size N, after adding a 

large number of zeros. Additionally, due to the use of an inverse DFT on N points, the resulting impulse 

response ℎ(𝑛) is periodic with a period N, even though the desired ideal impulse response is not of 

limited duration. 

Example: We aim to implement an ideal low-pass filter in digital form with a cutoff frequency 𝑓𝑐 =
𝑓0

10
  

and ∆𝑓 < 𝑓𝑐 =
𝑓0

16
. We therefore take N=17, which gives us ∆𝑓 =0.0588. 

We have: 𝑁 = 17, 𝐻(0) = 𝐻(−1) = 𝐻(1) = 1 and 𝐻(2) = 𝐻(−2) = ⋯ = 𝐻(8) = 𝐻(−8) = 0 
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We can deduce the values of the impulse response through the Discrete Fourier Transform (DFT): 

ℎ(𝑛) =
1

𝑁
∑ 𝐻(𝑘)𝑒

2𝜋𝑗𝑘𝑛

𝑁 =
 𝑘=

(𝑁−1)

2

 𝑘=
−(𝑁−1)

2

1

𝑁
(1 + 𝑒

−2𝜋𝑗𝑛

17 + 𝑒
2𝜋𝑗𝑛

17 ) 

ℎ(𝑛) =
1

17
(1 + 2cos (

2𝜋𝑛

17
)  for  −8 ≤ 𝑛 ≤ 8 

 

Figure 1.18: Impulse response ℎ(𝑛) of the filter 

Finally, to make this filter physically realizable, the impulse response is shifted by 8 samples.  

 

 

  

 

        

 

             

                   H(2) H(3) H(4)  H(5)  H(6)  H(7) H(8) 

Figure 1.19: Comparison of Filter Responses Using Frequency Sampling and Windowing Methods 

Given that 𝐻∗(𝑘) = 𝐻(−𝑘) for a real signal ℎ(𝑛), we can generally demonstrate the following: 

ℎ(𝑛) =
1

𝑁
(𝐻(0) + 2∑ 𝐻(𝑘)

 
(𝑁−1)

2

 𝑘=1
cos (

2𝜋𝑛

𝑁
)  for −

𝑁

2
≤ 𝑛 ≤

𝑁

2
 

The reduction of oscillations can also be achieved through windowing. Below are the coefficients 

of the filter ℎ(𝑛), followed by those obtained after applying the Hamming window ℎ𝑁
′ (𝑛).  

Table 1.2: Filter Coefficients ℎ(𝑛) and Reduced Oscillations Using Hamming Window ℎ𝑁
′ (𝑛) 

n 0 1 2 3 4 5 6 7 8 

h(n) -0,0257 -0,0269 -0,0153 0,0114 0,0514 0,0985 0,1430 0,1749 0,1865 

h'N(n) -0,0020 -0,0031 -0,0033 0,0041 0,0279 0,0705 0,1237 0,1688 0,1865 

n 9 10 11 12 13 14 15 16  

h(n) 0,1749 0,1430 0,0985 0,0514 0,01139 -0,0153 -0,0269 -0,0257  

h'N(n) 0,1688 0,1237 0,0705 0,0279 0,0041 -0,0032 -0,0031 -0,0020  

 

16

X 
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Figure 1.20: Pole-Zero Plot in the Complex Plane 

Remarks 

 When choosing N, ensure that 
𝑓𝑒

𝑁
  is less than ∆𝑓. Additionally, the ripples can be somewhat mitigated 

by smoothing the transitions in the filter's frequency response. To do this, 0.5 will be introduced between 

1 and 0. However, this will increase ∆𝑓, so N will need to be adjusted accordingly (2∆𝑓 <
𝑓𝑒

16
). This 

will result in a value of N of 33 and ∆𝑓 =0.0303. 

We will set 𝐻(3) = 𝐻(−3) = 0.5 Thus, 𝐻(0) = 𝐻(−1) = 𝐻(1) = 𝐻(2) = 𝐻(−2) = 1 

ℎ(𝑛) =
1

33
(1+ 2 cos(

2𝜋𝑛

33
) + 2 cos(

4𝜋𝑛

33
) + cos(

6𝜋𝑛

33
)) 

For −16 ≤ 𝑛 ≤ 16 

 

 

 

  

                                                                                                                                                                                                                                                                                       

                                                                                                                                                                                H(4) H(5)……………………………….……………………………H(16)                                                                                                                                                                                                 

Figure 1.21: Comparison of Impulse Responses h(n) for Different N Values (N=17 and N=33) 
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1.5 Infinite Impulse Response (IIR) Digital Filters 

Analog filters inherently have an infinite impulse response. IIR digital filters behave similarly, 

except for the effects caused by discretization. This category of filter is also characterized by a transfer 

function in the z-domain that contains poles, and by a recursive difference equation, meaning the output 

𝒚(𝒏) depends on both the current inputs and previous outputs. The equations below show the z-domain 

transfer function and the corresponding difference equation for the general form of an IIR filter. Here, 

N is referred to as the filter order. 

𝐻(𝑧) =
𝑁(𝑧)

𝐷(𝑧)
=

∑ 𝑏𝑖𝑧
−𝑖𝑁

𝑖=0

1 + ∑ 𝑎𝑖𝑧−𝑖
𝑁
𝑖=1

 

𝑦(𝑛) =∑𝑏𝑖𝑥(𝑛 − 𝑖)

𝑁

𝑖=0

−∑𝑎𝑖𝑦(𝑛 − 𝑖)

𝑁

𝑖=1

 

1.5.1 IIR Filter Topologies 

The following equation shows that an IIR filter 𝐻(𝑧) can be represented as the product of two 

structures: one being an FIR filter 𝑁(𝑧), and the other an all-pole IIR filter  
1

𝐷(𝑧)
. 

𝐻(𝑧) =
𝑁(𝑧)

𝐷(𝑧)
= 𝑁(𝑧) ×

1

𝐷(𝑧)
=∑𝑏𝑖𝑧

−𝑖

𝑁

𝑖=0

×
1

1 + ∑ 𝑎𝑖𝑧−𝑖
𝑁
𝑖=1

 

IIR filter topologies can be classified as: 

 Direct Type I or Type II 

 Transposed 

In addition, filters can be either monolithic or built from cascades of smaller (typically second order) 

sections. 

 Direct Type I 

This is a basic structure for implementing IIR filters, where the filter's transfer function is divided 

into a numerator (representing the feedforward terms) and a denominator (representing the feedback 

terms). The input signal is delayed and processed through both the feedforward and feedback sections 

to generate the output. While it can be used in both fixed-point and floating-point implementations, it 

may not always provide optimal numerical precision. 
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 Direct Type II 

This is an improved variation of the Direct Form Type I structure. The main distinction is that it 

minimizes the number of delay elements needed by merging the separate delay chains for the numerator 

and denominator into a single chain. This design can be more efficient, especially in hardware 

implementations. It is often more stable and provides better numerical precision compared to Type I. 

 

                                                  Figure 1.22: Direct Structures of IIR Filters 

 Transposed Type II 

In the transposed form, the multiplication and addition operations are rearranged compared to the 

direct form structures, with the feedback and feedforward paths swapped. Transposed forms typically 

offer improved numerical performance, particularly in floating-point implementations, as they reduce 

rounding errors by performing additions between numbers of similar magnitude. Both Type I and Type 

II structures have corresponding transposed versions. 
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Figure 1.23: Transposed type II of IIR Filters 

1.5.2 IIR Filter Design 

The design of a digital filter involves finding a function 𝐻(𝑧) (or ℎ(𝑘)) that meets the specified 

requirements in the form of a template. This function can be determined using various methods. The 

most common method is to use analog filter design techniques to obtain a function 𝐻(𝑝) that meets the 

specifications. A function that transforms the P-domain into the Z-domain (i.e., 𝑝 = 𝑓(𝑧)) is then used 

to derive 𝐻(𝑧). This transformation must preserve the stability of the analog filter and, as much as 

possible, maintain the frequency response characteristics of the digital filter. Three types of 

transformations are commonly used: the impulse invariance method, the Euler transformation, and the 

bilinear transformation.  

 IIR Filter Design Using Bilinear Transformation 

Principle: An analog filter is provided with a frequency response that meets the required specifications 

(such as a Butterworth filter). 

Objective: To find a digital IIR filter with a frequency response equivalent to that of the analog filter. 

Note: The matching of the frequency responses is limited to the useful frequency range of the digital 

filter, specifically for frequencies between 
𝑓𝑠

2
 and 0. 

To obtain the transfer function of the digital filter using bilinear transformation, the variable p in 

the transfer function of the analog filter is replaced by: 
2

𝑇
 
1−𝑧−1

1+𝑧−1
 

where T is the sampling period. 

Example  

Design a digital low-pass Butterworth filter using the bilinear transformation method with the 

following specifications: 

 Analog cutoff frequency: 𝜔𝑐 = 1000 
𝑟𝑎𝑑

𝑠⁄  

 Sampling frequency: 𝐹𝑠 = 8000 𝐻𝑧  
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 Order of the filter: N=1 (first-order Butterworth filter) 

Step-by-Step Solution: 

Step 1: Define the Analog Filter Transfer Function 

The transfer function of a first-order analog Butterworth filter is given by: 

𝐻(𝑝) =
𝜔𝑐

𝑝 + 𝜔𝑐
 

where 𝜔𝑐=1000 rad/s is the analog cutoff frequency. 

Thus, the analog transfer function becomes: 

𝐻(𝑝) =
1000

𝑝 + 1000
 

Step 2: Apply the Bilinear Transformation 

The bilinear transformation is given by: 

2

𝑇
 
1 − 𝑧−1

1 + 𝑧−1
 

where  𝑇 =
1

𝐹𝑠
= 8000 = 0.000125 seconds is the sampling period. 

Substituting this into the analog transfer function 𝐻(𝑝), we replace s with the bilinear transformation: 

𝐻(𝑧) = 𝐻(
2

𝑇
 
1 − 𝑧−1

1 + 𝑧−1
) 

First, calculate the term: 𝑝 =
2

0.000125
 
1−𝑧−1

1+𝑧−1
=16000

1−𝑧−1

1+𝑧−1
 

Now, substitute this into the analog transfer function: 

𝐻(𝑧) =
1000

16000
1 − 𝑧−1

1 + 𝑧−1
+ 1000

 

Simplify the expression: 

𝐻(𝑧) =
1000(1+ 𝑧−1)

16000(1 − 𝑧−1) + 1000(1 + 𝑧−1)
 

𝐻(𝑧) =
1000(1+ 𝑧−1)

17000 − 1500𝑧−1
 

 

Step 3: Final Digital Filter Transfer Function 

Thus, the digital filter's transfer function becomes: 

𝐻(𝑧) =
1000(1+ 𝑧−1)

17000 − 1500𝑧−1
 

We can simplify this by dividing both the numerator and the denominator by 17000: 

𝐻(𝑧) =

1000
17000 (1 + 𝑧

−1)

1 −
1500
17000𝑧

−1
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𝐻(𝑧) =
0.0588(1+ 𝑧−1)

1 − 0.8824𝑧−1
 

Step 4: Difference Equation Form 

The digital filter transfer function can now be converted into the time-domain difference equation using: 

𝐻(𝑧)
𝑌(𝑧)

𝑋(𝑧)
=
0.0588(1 + 𝑧−1)

1 − 0.8824𝑧−1
 

This corresponds to the following difference equation: 

𝑦(𝑛) − 0.8824𝑦(𝑛 − 1) = 0.0588× 𝑥(𝑛) + 0.0588 × 𝑥(𝑛 − 1) 

Or  equivalently: 

𝑦(𝑛) = 0.8824𝑦(𝑛 − 1) + 0.0588× 𝑥(𝑛) + 0.0588 × 𝑥(𝑛 − 1) 

In this example, we designed a digital low-pass Butterworth filter using the bilinear transformation 

method. We started with an analog Butterworth filter with a cutoff frequency of 1000 rad/s and a 

sampling frequency of 8000 Hz. After applying the bilinear transformation, we obtained the digital 

filter's transfer function and the corresponding difference equation. This process can be extended to 

higher-order filters and other filter types (e.g., high-pass, band-pass, etc.). 

1.5.2.1 Advantages of IIR digital filters 

 Low implementation cost: requires less coefficients and memory than FIR filters in order to 

satisfy a similar set of specifications, i.e., cut-off frequency and stopband attenuation. 

 Low latency: suitable for real-time control and very high-speed RF (Radio Frequency) 

applications by virtue of the low number of coefficients. 

 Analog equivalent: May be used for mimicking the characteristics of analog filters using p-z 

plane mapping transforms. 

1.5.2.2 Disadvantages of IIR digital filters 

 Non-linear phase characteristics: The phase charactersitics of an IIR filter are generally 

nonlinear, especially near the cut-off frequencies. All-pass equalisation filters can be used in 

order to improve the passband phase characteristics. 

 More detailed analysis: Requires more scaling and numeric overflow analysis when 

implemented in fixed point. The Direct form II filter structure is especially sensitive to the 

effects of quantisation, and requires special care during the design phase. 

 Numerical stability: Less numerically stable than their FIR (finite impulse response) 

counterparts, due to the feedback paths. 

https://www.advsolned.com/linear-phase-iir-filters-analysis-and-design/
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Figure 1.24: Example of filtering on a sound file 

Application of a filter for edge detection 

 

             

 

 

             Figure 1.25: Example of filtering on an image file
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2.1 Averaging Filter 

Physiological signals, such as electrocardiograms (ECG), electroencephalograms (EEG), as 

well as medical images like MRIs (Magnetic Resonance Imaging) or X-rays, are essential tools 

for diagnosing and monitoring diseases. However, these signals and images are often affected by 

various types of noise and artifacts, making their analysis more complex. To enhance the quality 

of this data and extract clear and reliable information, the application of appropriate filtering 

techniques is crucial. Among these techniques, the averaging and median filters are particularly 

common. The averaging filter is a linear filter that replaces each sample or pixel with the average 

of the neighboring values within a defined window. In equation form, this can be written as : 

𝑦[𝑖] =
1

𝑀
∑ 𝑥[𝑖 + 𝑗]

𝑀−1

𝐽=0

 

Example  

𝑦(70) =
𝑥(70) + 𝑥(71) + 𝑥(72) + 𝑥(73) + 𝑥(74)

5
 

Alternatively, the group of points from the input signal can be chosen symmetrically around 

the output point. 

𝑦(70) =
𝑥(68) + 𝑥(69) + 𝑥(70) + 𝑥(71) + 𝑥(72)

5
 

This corresponds to changing the summation in equation (1) from 𝑗 = 0 to 𝑀 − 1 to  
−(𝑀−1)

2
 

à  
(𝑀−1)

2
. 

By smoothing rapid variations and reducing random noise, this filter is widely used in the 

processing of physiological signals and medical images. In the case of physiological signals, it 

helps to attenuate minor fluctuations that can obscure important information. For medical imaging, 

the averaging filter reduces background noise, thereby improving the visibility of anatomical 

structures. However, its application can lead to edge blurring or loss of details, which is a 

significant limitation when applied to medical images or signals where abrupt transitions are 

important. 

Example 

 Consider a filter that performs a sliding average on the most recent samples arriving at the input. 

The algorithm is written as follows: 

𝑦(𝑛) =
𝑥(𝑛)+ 𝑥(𝑛 − 1) + 𝑥(𝑛 − 2) + 𝑥(𝑛 − 3)

4
                                                          

= 0.25. [𝑥(𝑛)+ 𝑥(𝑛 − 1)+ 𝑥(𝑛 − 2) + 𝑥(𝑛 − 3)] 
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From the algorithm, it is easy to manually calculate the outputs at times 𝑇, 2𝑇, …to observe the 

behavior of the filter. 

 

 

 
𝒚(𝟎) = 𝟎. 𝟐𝟓𝒙(𝟎) = 𝟎. 𝟐𝟓 × 𝟎 = 𝟎 

𝒚(𝟏) = 𝟎. 𝟐𝟓[𝒙(𝟎) + 𝒙(𝟏)] = 𝟎. 𝟐𝟓[𝟎 + 𝟏] = 𝟎. 𝟐𝟓 × 𝟏 = 𝟎. 𝟐𝟓 

𝒚(𝟐) = 𝟎. 𝟐𝟓[𝒙(𝟎) + 𝒙(𝟏) + 𝒙(𝟐)] = 𝟎. 𝟐𝟓[𝟎 + 𝟏 + 𝟓] = 𝟎. 𝟐𝟓 × 𝟔 = 𝟏. 𝟓 

𝒚(𝟑) = 𝟎. 𝟐𝟓[𝒙(𝟎) + 𝒙(𝟏) + 𝒙(𝟐) + 𝒙(𝟑)] = 𝟎. 𝟐𝟓[𝟎 + 𝟏 + 𝟓 + 𝟐] = 𝟎. 𝟐𝟓 × 𝟖 = 𝟐 

𝒚(𝟒) = 𝟎. 𝟐𝟓[𝒙(𝟏) + 𝒙(𝟐) + 𝒙(𝟑) + 𝒙(𝟒)] = 𝟎. 𝟐𝟓[𝟏 + 𝟓 + 𝟐 + 𝟒] = 𝟎. 𝟐𝟓 × 𝟏𝟐 = 𝟑 

𝒚(𝟓) = 𝟎. 𝟐𝟓[𝒙(𝟐) + 𝒙(𝟑) + 𝒙(𝟒) + 𝒙(𝟓)] = 𝟎. 𝟐𝟓[𝟓 + 𝟐 + 𝟒 + 𝟓] = 𝟎. 𝟐𝟓 × 𝟏𝟔 = 𝟒 

 

 

Figure 2.1: Digital filter for averaging four input values 

Note: This manual study is only feasible for very simple filters. For more complex filters, software 

tools are used. 

2.1.1 Example Application for a Physiological Signal 

An electrocardiogram (ECG) is an electrophysiological signal that describes the electrical 

behavior of the human heart. The electrocardiographic signal (ECG) requires several 

measurements from different parts of the patient's body (biomedical instrumentation). However, 

the presence of electrical equipment introduces disturbances that affect the instrumentation system. 

The amplitude of the ECG is about 1 mV, and its bandwidth ranges from 0.5 to 100 Hz. Figure 2.2 

shows an electrocardiographic signal extracted from the Physionet signal database, along with its 

components in the frequency domain. 

 

Figure 2.2: Proposed ECG Signal and Its Spectrum 

𝒙(𝒏) 

Digital filter 

𝒚(𝒏) 
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This signal will be modified by adding noise corresponding to the interference generated by 

nearby electrical lines, which is common in ECG signals once they are acquired. The resulting 

waveform is shown in Figure 2.3. This new version of the original signal is closer to a real-world 

scenario where various factors, such as electrical lines, can introduce unwanted data into the time 

window. Next, the averaging filter can be obtained using a simple MATLAB code. 

 

Figure 2.3: ECG Signal Distorted by Electrical Line Noise 

As a result, the initially added noise is significantly reduced, as shown in Figure 2.4. This 

demonstrates that the averaging filter is highly effective as a low-pass filter, removing unwanted 

components from the studied signal. Additionally, the computational load is not demanding for 

real-time applications. 

Figure 2.4: Filtered ECG Signal Using an Averaging Filter with M=8 

2.1.2 Local Averaging Filter Application in Medical Imaging 

The averaging filter is part of the category of local image filters because it computes the new 

value of a pixel based on the values of neighboring pixels. Specifically, the filtered value of a pixel 

p is equal to the average of the values of the pixels surrounding p. Generally, the "neighboring 

pixels of p" are defined as the set of pixels contained within a square of width k centered on p: 
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Figure 2.5: Example of 3x3 Average Filtering Applied to a Pixel Matrix 

With an averaging filter of width 3, to calculate the new value of the red pixel in the original 

image on the left, we compute the average value of the pixels located within a 3×3 square centered 

on that pixel. This gives the new value of the pixel in the transformed image (green pixel in the 

image on the right): 

42 + 111 + 154 + 23 + 123 + 176 + 63 + 145 + 134

9
= 108 

This operation is repeated for all pixels in the image. The term "sliding window" refers to 

the square over which the average of the pixels is calculated and which moves across the image.  

 

Figure 2.6: Example of Denoising Gaussian Noise Using an Averaging Filter on a Pixel Matrix 

MATLAB Implementation 

clear, clc, close all  

 %Load a medical image (for example, a brain scan image) 

image = imread('C:\XX\aa.jpeg'); % Replace with your image  

image_gray = im2gray(image); % Convert to grayscale if the image is in RGB format 
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% Add Gaussian noise to the image 

noisy_image = imnoise(image_gray, 'gaussian', 0, 0.1); % Gaussian noise with a variance of 0.01 

% Apply an averaging filter with a 5x5 kernel size 

kernel_size = 5; 
filtered_image = imfilter(noisy_image, fspecial('average', kernel_size)); 

 

% Display the images: original, noisy, and filtered 

figure; 

subplot(1, 3, 1); 

imshow(image_gray); 

title('Original Image '); 

subplot(1, 3, 2); 

imshow(noisy_image); 

title ('Image with Gaussian Noise'); 

subplot(1, 3, 3); 
imshow(filtered_image); 

title ('IImage after Averaging Filter'); 

2.2 Median filter 

The median filter, on the other hand, is a nonlinear filter that replaces each sample or pixel 

with the median of the neighboring values. This type of filtering is particularly effective at 

removing impulse noise, such as salt-and-pepper artifacts in imaging, or noise spikes in 

physiological signals. Unlike the averaging filter, the median filter better preserves edges and sharp 

transitions, which is crucial for diagnostic purposes in medical imaging where fine details are 

important. In the domain of physiological signals, it is also useful for removing noise spikes while 

maintaining the essential morphology of the signal. 

Thus, the choice between an averaging filter and a median filter depends on the type of noise 

present and the specific requirements of the analysis. In medical imaging and physiological signal 

processing, these filters play a crucial role in enhancing data quality, thereby facilitating more 

accurate and reliable diagnosis. 

What Is Median Filtering? 

Image noise can be briefly defined as random variations in some of the pixel values of an 

image. We know filters are used to reduce the amount of noise present in an image, but how does 

Median filtering work? Let’s use an example 3x3 matrix of pixel values: 

[
22 24 27
31 98 29
27 22 23

] 

Notice the center pixel: the clear outlier in this matrix. Outliers like this can produce what is 

called salt-and-pepper noise, which produces an image that looks exactly what you might imagine: 
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Figure 2.7: Image Degraded by Salt-and-Pepper Noise 

This image has a significant amount of salt-and-pepper noise, namely the black and white 

pixels that appear out of place Median filtering is excellent at reducing this type of noise. The 

filtering algorithm will scan the entire image, using a small matrix (like the 3x3 depicted above), 

and recalculate the value of the center pixel by simply taking the median of all of the values inside 

the matrix.  

With the example above, the sorted values are [22, 22, 23, 24, 27, 27, 29, 31, 98], and median 

of this set is 27. Let’s apply the filter and see how it looks: 

 

Left: original image with noise. Right: Image with median filter applied. 

Figure 2.8: Example of Denoising Salt-and-Pepper Noise Using median filter 

Look at that! Basically all of the salt-and-pepper noise is gone! Now, let’s compare this to a 

Gaussian filter and see if there is a difference: 
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Figure 2.9: Comparison of Median Filtering (Left) and Gaussian Filtering (Right) 

As we can see, the Gaussian filter didn’t get rid of any of the salt-and-pepper noise! The neat 

thing about a median filter is that the center pixel value will be replaced by a value that is present 

in the surrounding pixels. This differs from Gaussian which will use the weighted average instead, 

where outliers can heavily skew the average, resulting in almost no noise reduction in this case.  
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3.1 Discrete Fourier Transform (DFT) 

When we want to compute the Fourier transform of a function 𝑥(𝑡) using a computer, since 

the computer only has a finite number of words of finite size, we are led to: 

 Discretize the time-domain function, 

 Truncate the time-domain function, 

 Discretize the frequency-domain function. 

f 

 

 

 

 

 

 

 

 

 

 

 

f 

Figure 3.1: Steps for Computing the Fourier Transform on a Computer: Discretization and 

Truncation 

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
+∞

−∞

 

𝑥∗(𝑡) = 𝑥(𝑡) ∑ 𝛿(𝑡 − 𝑛𝑇0)

+∞

𝑛=−∞

 

               = ∑ 𝑥(𝑛𝑇0)𝛿(𝑡 − 𝑛𝑇0)

+∞

𝑛=−∞

 

𝑋∗𝑇(𝑛𝑇0) 𝑋
∗
𝑓0(𝑘∆𝑓) 

𝑇 = 𝑁𝑇0 
t 

∆𝑓 =
𝑓0
𝑁

 

𝑥(𝑡) 

t 

𝑋(𝑓) 

𝑥∗(𝑡) 𝑋∗𝑓0(𝑓) 

𝑇0 t 𝑓0  f 
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By using the Fourier Transform, we obtain: 

𝑋∗(𝑓) = ∫ ∑ 𝑥(𝑛𝑇0)𝛿(𝑡 − 𝑛𝑇0)𝑒
−𝑗2𝜋𝑓𝑡𝑑𝑡

+∞

𝑛=−∞

+∞

−∞

 

     = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

∫ 𝛿(𝑡 − 𝑛𝑇0)𝑒
−𝑗2𝜋𝑓𝑡

+∞

−∞

𝑑𝑡 

        = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

∫ 𝛿(𝑡 − 𝑛𝑇0)𝑒
−𝑗2𝜋𝑓𝑛𝑇0

+∞

−∞

𝑑𝑡 

          = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑓𝑛𝑇0∫ 𝛿(𝑡 − 𝑛𝑇0)
+∞

−∞

𝑑𝑡  

                                     = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑓𝑛𝑇0    where:∫ 𝛿(𝑡 − 𝑛𝑇0)
+∞

−∞

𝑑𝑡 = 1 

𝑋∗(𝑓) = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑓𝑛𝑇0 

On the other hand, we have: 

𝑥∗(𝑡) = 𝑥(𝑡) ∑ 𝛿(𝑡 − 𝑛𝑇0)

+∞

𝑛=−∞

 

By using the Fourier Transform, we obtain: 

𝑋∗(𝑓) = 𝑋(𝑓) ∗ 𝑇𝐹 [ ∑ 𝛿(𝑡 − 𝑛𝑇0)

+∞

𝑛=−∞

] 

𝑇𝐹 [ ∑ 𝛿(𝑡 − 𝑛𝑇0)

+∞

𝑛=−∞

] = 𝑇𝐹 [ ∑ 𝐶𝑛𝑒
𝑗2𝜋𝑛𝑓0𝑡

+∞

𝑛=−∞

] 

𝐶𝑛 =
1

𝑇0
∫ 𝛿(𝑡)𝑑𝑡 =

1

𝑇0
= 𝑓0

𝑇0
2

−
𝑇0
2

 

𝑇𝐹 [ ∑ 𝛿(𝑡 − 𝑛𝑇0)

+∞

𝑛=−∞

] = 𝑓0𝑇𝐹 [ ∑ 𝑒𝑗2𝜋𝑛𝑓0𝑡
+∞

𝑛=−∞

] 
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= 𝑓0∫ ∑ 𝑒𝑗2𝜋𝑛𝑓0𝑡 × 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

+∞

𝑛=−∞

+∞

−∞

 

= 𝑓0∫ ∑ 𝑒−𝑗2𝜋(𝑓−𝑛𝑓0)𝑡𝑑𝑡

+∞

𝑛=−∞

+∞

−∞

 

= 𝑓0 ∑ ∫ 𝑒−𝑗2𝜋(𝑓−𝑛𝑓0)𝑡𝑑𝑡
+∞

−∞

+∞

𝑛=−∞

 

= 𝑓0 ∑ 𝛿(𝑓 − 𝑛𝑓0)

+∞

𝑛=−∞

 

𝑋∗(𝑓) = 𝑋(𝑓) ∗ 𝑇𝐹 [ ∑ 𝛿(𝑛 − 𝑛𝑇0)

+∞

𝑛=−∞

] 

𝑋∗(𝑓) = 𝑋(𝑓) ∗ 𝑓0 ∑ 𝛿(𝑓 − 𝑛𝑓0)

+∞

𝑛=−∞

 

                                = 𝑓0∫ 𝑋(𝜏) ∑ 𝛿[(𝑓 − 𝑛𝑓0) − 𝜏]𝑑𝜏

+∞

𝑛=−∞

+∞

−∞

 

                                   = 𝑓0∫ 𝑋(𝜏) ∑ 𝛿[𝜏 − (𝑓 − 𝑛𝑓0)]𝑑𝜏

+∞

𝑛=−∞

+∞

−∞

 

= 𝑓0 ∑ 𝑋(𝑓 − 𝑛𝑓0)

+∞

𝑛=−∞

 

𝑋∗(𝑓) = 𝑓0 ∑ 𝑋(𝑓 − 𝑛𝑓0)

+∞

𝑛=−∞

 

𝑓 = 𝑘∆𝑓 

𝑓0 = 𝑁∆𝑓 → ∆𝑓 =
𝑓0
𝑁
=

1

𝑁𝑇0
 

𝑋∗(𝑓) = ∑ 𝐶𝑛𝑒
−𝑗2𝜋𝑛𝑇0𝑓

+∞

𝑛=−∞
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𝐶𝑛 =
1

𝑓0
∫ 𝑋∗(𝑓)𝑒𝑗2𝜋𝑛𝑇0𝑓𝑑𝑓

𝑓0
2

−
𝑓0
2

 

𝑋∗(𝑓) = ∑
1

𝑓0
∫ 𝑋∗(𝑓)𝑒𝑗2𝜋𝑛𝑓𝑇0𝑑𝑓𝑒−𝑗2𝜋𝑛𝑓𝑇0

𝑓0
2

−
𝑓0
2

+∞

𝑛=−∞

 

We also have: 

𝑋∗(𝑓) = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑓𝑛𝑇0 

By identification, we obtain: 

𝑥(𝑛𝑇0) =
1

𝑓0
∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑛𝑓𝑇0𝑑𝑓

𝑓0
2

−
𝑓0
2

 

𝑋∗(𝑓) = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑓𝑛𝑇0 

𝑋∗(𝑘∆𝑓) = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑘∆𝑓𝑛𝑇0 

= ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑘
𝑓0
𝑁
𝑛𝑇0 

= ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋
𝑛𝑘
𝑁  

𝑋(𝑘) = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋
𝑛𝑘
𝑁  

𝑥(𝑛𝑇0) =
1

𝑓0
∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑛𝑓𝑇0𝑑𝑓

𝑓0
2

−
𝑓0
2

 

𝑥(𝑛) =
1

𝑓0
∫ 𝑋(𝑘∆𝑓)𝑒𝑗2𝜋𝑛𝑘∆𝑓0𝑑𝑓

𝑓0
2

−
𝑓0
2
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𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘)

𝑁
2

𝑛=−
𝑁
2

𝑒𝑗2𝜋
1
𝑁
𝑛𝑘

 

𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘)

𝑁
2

𝑛=−
𝑁
2

𝑒𝑗2𝜋
𝑛𝑘
𝑁  

In relation to the equations derived in the "DFT" section, it is helpful to introduce the 

following substitution: 

𝑊𝑁
𝑛𝑘 = 𝑒−𝑗 

2𝜋𝑛𝑘
𝑁  

 

The  𝑊𝑁
𝑛𝑘  element in this substitution is also called the "twiddle factor." With respect to this 

substitution, we may rewrite the equation for computing the DFT and IDFT into these formats: 

𝐷𝐹𝑇[𝑥(𝑛)] = 𝑋(𝑘) = ∑ 𝑥(𝑛).

𝑁−1

𝑛=0

𝑊𝑁
𝑛𝑘  

𝐼𝐷𝐹𝑇[𝑋(𝑘)] = 𝑥(𝑛) =
1

𝑁
.∑ 𝑋(𝑘).

𝑁−1

𝑘=0

𝑊𝑁
−𝑛𝑘  

3.1.1 Propriétés de la TFD 

To enhance the efficiency of computing the DFT, certain properties of 𝑊𝑁
𝑛𝑘  are exploited. 

These properties stem from the graphical representation of the twiddle factor as a rotational vector 

for each nk value. They are described as follows: 

3.1.1.1 Periodicity 

The sequence 𝑋(𝑘) is a periodic sequence with a period of N. 

𝑋(𝑘 + 𝑁) =
1

𝑁
.∑ 𝑥(𝑛). 𝑒−𝑗.

2.𝜋
𝑁
.(𝑘+𝑁).𝑛

𝑁−1

𝑛=0

 

 

1

𝑁
.∑ 𝑥(𝑛). 𝑒−𝑗.

2.𝜋
𝑁
.𝑘.𝑛 . 𝑒−𝑗.

2.𝜋
𝑁
.𝑁.𝑛 =

1

𝑁
.∑ 𝑥(𝑛). 𝑒−𝑗.

2.𝜋
𝑁
.𝑘.𝑛 = 𝑋(𝑘)

𝑁−1

𝑛=0

𝑁−1

𝑛=0

 

 

 

3.1.1.2   Symetry 

𝑋(−𝑘) =
1

𝑁
.∑ 𝑥(𝑛). 𝑒−𝑗.

2.𝜋
𝑁
.(−𝑘).𝑛

𝑁−1

𝑛=0

= 𝑋(𝑘) =
1

𝑁
.∑ 𝑋𝑛 . (𝑒

−𝑗.
2𝜋
𝑁
.𝑘.𝑛)

∗

= 𝑋∗(𝑘)

𝑁−1

𝑛=0

 

𝑒−𝑗.2.𝜋.𝑛 = 1∀𝑛 
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where 𝑋∗(𝑘) denotes the complex conjugate of 𝑋(𝑘). 

Example  

Consider the sequence: 

𝑥(𝑛)= [3, −1, 2, −2]  

We will calculate the DFT using the matrix form for N=4. 

DFT Matrix Form: 

The DFT matrix 𝑊𝑁  of size N×N is given by: 

𝑊𝑁
𝑛𝑘 = 𝑒−𝑗

2𝜋
𝑁
𝑘𝑛

 

For N=4, the matrix 𝑊4 is: 𝑒−𝑗𝜋  

𝑊4 =

[
 
 
 
 
1         1         1         1

1   𝑒−𝑗
𝜋
2    𝑒−𝑗𝜋  𝑒−𝑗

3𝜋
2

1  𝑒−𝑗𝜋   𝑒−2𝑗𝜋   𝑒−3𝑗𝜋

1  𝑒−𝑗
3𝜋
2   𝑒−3𝑗𝜋  𝑒−𝑗

9𝜋
2 ]
 
 
 
 

 

Substituting values: 

 𝑒−𝑗
𝜋
2 = −𝑗    

𝑒−𝑗𝜋 = −1 

 𝑒−𝑗
3𝜋
2 = 𝑗    

𝑒−𝑗2𝜋 = 1 

The DFT matrix becomes: 

 

𝑊4 = [

1   1    1   1
1 − 𝑗 − 1    𝑗
1 − 1    1   1
1   𝑗 − 1 − 𝑗

] 

Step 1: Input Sequence 𝑥(𝑛): 

The input sequence is: 

𝑥 = [

3
−1
2
−2

] 
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Step 2: Perform Matrix Multiplication 

Now multiply the DFT matrix  𝑊4 by the input sequence 𝑥: 

𝑋 = 𝑊4𝑥 = [

1   1    1   1
1 − 𝑗 − 1    𝑗
1 − 1    1   1
1   𝑗 − 1 − 𝑗

] × [

3
−1
2
−2

] 

Perform the multiplication row by row: 

𝑋(0)=1×3+1×(−1)+1×2+1×(−2)=3−1+2−2=2 

𝑋(1)=1×3+(−j)×(−1)+(−1)×2+j×(−2) =3+j−2−2j=1−j 

𝑋(2)=1×3+(−1)×(−1)+1×2+(−1)×(−2)=3+1+2+2=8 

𝑋(3)=1×3+j× (−1) +(−1) ×2+(−j)×(−2)=3−j−2+2j= 1 + j 

The DFT of the sequence 𝑥(𝑛)= [3, −1, 2, −2] is: 𝑋(𝑘)= [2, 1−j, 8, 1+j] 

In this example, we computed the DFT of the sequence 𝑥(𝑛)= [3, −1, 2, −2] using matrix 

multiplication. The result 𝑋(𝑘)=[2,1−j,8,1+j] provides the frequency domain representation of the 

input sequence, showing how both positive and negative values contribute to the DFT. The result 

contains both real and imaginary components, representing the magnitude and phase of the 

frequency components. 

3.1.2 Fast Fourier Transform (FFT) 

The Fast Fourier Transform is an efficient algorithm for computing the Discrete Fourier 

Transform (DFT) and its inverse. However, the direct computation of the DFT has a high 

computational cost, requiring O (𝑁2) operations for a signal of length N, making it impractical for 

large datasets. The FFT significantly reduces this computational complexity to O (𝑁𝑙𝑜𝑔𝑁) by 

taking advantage of the symmetry and periodicity properties of the twiddle factors (the complex 

exponential terms in the DFT). This allows for faster and more efficient processing, especially for 

large data sets.  

The most commonly used FFT algorithm is the Cooley-Tukey algorithm, which recursively 

breaks down a DFT of size NNN into smaller DFTs, usually by splitting the signal into even and 

odd indexed components. This divide-and-conquer approach enables faster calculations, making 

FFT crucial in various real-time applications like audio processing, image compression, radar, and 

more. 

FFT revolutionized the field of digital signal processing by enabling practical and efficient 

analysis of signals in both time and frequency domains. 

 

3.1.2.1 Radix-2 decimation in time FFT description 

The basic idea of the FFT is to decompose the DFT of a time-domain sequence of length N 

into successively smaller DFTs whose calculations require fewer arithmetic operations. This is 
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known as a divide-and-conquer strategy, made possible using the properties described in the 

previous section. The decomposition into shorter DFTs may be performed by splitting an N-point 

input data sequence x(n) into two N/2-point data sequences a(m) and b(m), corresponding to the 

even-numbered and odd-numbered samples of x(n), respectively, that is: 

 a(m)=x(2m), that is, samples of x(n) for n = 2m 

 b(m)=x(2m+1), that is, samples of x(n) for n = 2m + 1 

where m is an integer in the range of 0 ≤ m <N/2. 

The DFT of 𝑥(𝑛) is given by: 

𝑋(𝑘) = ∑ 𝑥(𝑛)

𝑁−1

𝑛=0

. 𝑊𝑁
𝑛𝑘  

We split this sum into even and odd indices: 

𝑋(𝑘) =  ∑ 𝑥(2𝑚)

𝑁/2−1

𝑛=0

. 𝑊𝑁
2𝑚𝑘 + ∑ 𝑥(2𝑚 + 1)

𝑁/2−1

𝑛=0

.𝑊𝑁
(2𝑚+1)𝑘

 

        = ∑ x(2m)

N/2−1

n=0

. WN
2mk +WN

k ∑ x(2m+ 1).WN
2mk

N/2−1

n=0

 

                                           = ∑ a(m)

N
2
−1

n=0

.WN
2

mk +WN
k∑b(m).WN

2

mk

N
2
−1

n=0

 

                                      = 𝐴(𝑘) 

0 ≤ k ≤ N 

These two summations represent the N/2-point DFTs of the sequences a(m) and b(m), 

respectively.  

Thus, DFT[a(m)] = A(k) for even-numbered samples, and DFT[b(m)] = B(k) for odd-

numbered samples.  

Thanks to the periodicity property of the DFT, the outputs for N/2 ≤ k < N from a DFT of 

length N/2 are identical to the outputs for 0 ≤ k <N/2.  

That is, A(k+N/2) = A(k) and B(k + N/2) = B(k) for 0≤ k <N/2.  

In addition, the factor 𝑊𝑁
𝑘+𝑁/2

= −𝑊𝑁
𝐾    thanks to the symmetry property. 

 Thus, the whole DFT can be calculated as follows:  

𝑋(𝑘) = 𝐴(𝑘) +𝑊𝑁
𝑘𝐵(𝑘) 

𝑋(𝑘 + 𝑁/2) = 𝐴(𝑘) −𝑊𝑁
𝑘𝐵(𝑘) 

0 ≤ k ≤ N/2 
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This result, expressing the DFT of length recursively in terms of two DFTs of size N/2, is the 

core of the radix-2 DIT FFT. Note, that final outputs of X(k) are obtained by a +/- combination 

of A(k) and B(k) W, which is simply a size 2 DFT. These combinations can be demonstrated by 

a simply-oriented graph, sometimes called "butterfly" in this context (see Figure 3.2). 

 

 

 

 

 

Figure 3.2: Basic butterfly computation in the DIT FFT algorithm 

The procedure of computing the discrete series of an N-point DFT into two N/2-point DFT 

s may be adopted for computing the series of N/2-point DFTs from items of N/4-point DFT s. For 

this purpose, each N/2-point sequence should be divided into two sub-sequences of even and odd 

items, and computing their DFTs consecutively. The decimation of the data sequence can be 

repeated again and again until the resulting sequence is reduced to one basic DFT. 

For illustrative purposes, Figure 3.3 depicts the computation of an N= 8-point DFT. We 

observe that the computation is performed in three stages (3 = log28), beginning with the 

computations of four 2-point DFTs, then two 4-point DFTs, and finally, one 8-point DFT. 

Generally, for an N-point FFT, the FFT algorithm decomposes the DFT into log2N stages, each of 

which consists of N/2 butterfly computations. The combination of the smaller DFTs to form the 

larger DFT for N= 8 is illustrated in Figure 3.4. 

 

Figure 3.3:  Decomposition of an 8-point DFT 

 

FFT implementation 

The procedure of computing the discrete series of an N-point DFT into two N/2-point DFTs may be 
adopted for computing the series of N/2-point DFTs from items of N/4-point DFTs. For this purpose, each 

N/2-point sequence should be divided into two sub-sequences of even and odd items, and computing their 

DFTs consecutively. The decimation of the data sequence can be repeated again and again until the 

 

resulting sequence is reduced to one basic DFT. 
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Figure 2. Decomposition of an 8-point DFT 
 

For illustrative purposes, Figure 2 depicts the computation of an N = 8-point DFT. We observe that 

the computation is performed in three stages (3 = log28), beginning with the computations of four 2-point 

DFTs, then two 4-point DFTs, and finally, one 8-point DFT. Generally, for an N-point FFT, the FFT 

algorithm decomposes the DFT into log2N stages, each of which consists of N/2 butterfly 

computations.The combination of the smaller DFTs to form the larger DFT for N = 8 is illustrated 

in Figure 3. 
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 Figure 3.4:  8-point radix-2 DIT FFT algorithm data flow 

Each dot represents a complex addition and each arrow represents a complex multiplication, as 

shown in Figure 3.4 The 𝑊𝑁
𝑘  factors in Figure 3.4 may be presented as a power of two (𝑊2) at the 

first stage, as a power of four (𝑊4)  at the second stage, as a power of eight (𝑊8) at the third stage, 

and so on. It is also possible to represent it uniformly as a power of N (𝑊𝑁), where Nis the size of 

the input sequence x(n).  

3.1.2.2 Radix-2 decimation in time FFT requirements 

For effective and optimal decomposition of the input data sequence into even and odd sub-

sequences, it is good to have the power-of-two input data samples (.... 64, 128, and so on). 

The first step before computing the radix-2 FFT is re-ordering of the input data sequence (see also 

the left side of Figure 3.4 and Figure 3.5). This means that this algorithm needs a bit-reversed data 

ordering: that is, the MSBs become LSBs, and vice versa. Table 3.1 shows an example of a bit-

reversal with an 8-point input sequence. 

                              Table 3.1: Bit reversal with an 8-point input sequence 

Decimal number 0 1 2 3 4 5 6 7 

Binary equivalent 000 001 010 011 100 101 110 111 

Binary equivalent 000 100 010 110 001 101 011 111 

Decimal equivalent 0 4 2 6 1 5 3 7 
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Figure 3. 8-point radix-2 DIT FFT algorithm data flow 
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Each dot represents a complex addition and each arrow represents a complex multiplication, as shown in 

Figure 3. The WN
k factors in Figure 3 may be presented as a power of two (W2) at the first stage, as a power 

of four (W4) at the second stage, as a power of eight (W8) at the third stage, and so on. It is also possible 
to represent it uniformly as a power of N (WN ), where N is the size of the input sequence x(n). The context 
between both expressions is shown in Equation 8. 

 

3.1 The radix-2 decimation in time FFT requirements 

For effective and optimal decomposition of the input data sequence into even and odd sub-sequences, it is 

good to have the power-of-two input data samples (..., 64, 128, and so on). 

The first step before computing the radix-2 FFT is re-ordering of the input data sequence (see also the left 

side of Figure 2 and Figure 3). This means that this algorithm needs a bit-reversed data ordering; that is, 
the MSBs become LSBs, and vice versa. Table 1 shows an example of a bit-reversal with an 8-point input 

sequence. 

Table 1. Bit reversal with an 8-point input sequence 
 

Decimal number 0 1 2 3 4 5 6 7 

Binary equivalent 000 001 010 011 100 101 110 111 

Bit reversed binary 000 100 010 110 001 101 011 111 

Decimal equivalent 0 4 2 6 1 5 3 7 
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3.1.2.3 Fast Fourier Transform (FFT) in ECG Signal Analysis: 

FFT is widely used to analyze Electrocardiogram (ECG) signals, which measure heart 

activity. By converting the ECG signal from the time domain to the frequency domain, FFT helps 

reveal important frequency components related to heart function. 

Key Applications: 

 Heart Rate Variability (HRV): FFT breaks down RR intervals into frequency bands (low 

and high), indicating autonomic nervous system activity. 

 Arrhythmia Detection: Abnormal heart rhythms, like atrial fibrillation, show distinctive 

high-frequency components. 

 Myocardial Ischemia: Shifts in specific frequency components can indicate reduced blood 

flow to the heart. 

FFT enhances the ability to diagnose heart conditions by making hidden patterns in ECG 

data visible. 

3.1.2.4 Application of FFT in ECG Signal Analysis using MATLAB 

Below is a step-by-step guide to applying FFT to an ECG signal in MATLAB. This example will 

show how to load an ECG signal, preprocess it, apply FFT, and visualize the frequency spectrum.  

A. Load or Simulate ECG Signal 

You can either load an actual ECG dataset or simulate one using built-in MATLAB functions. 

MATLAB Implementation 

clear, clc, close all  

% Simulate an ECG signal (you can replace this with actual ECG data)  

Fs = 500; % Sampling frequency (500 Hz)  

t = 0:1/Fs:5-1/Fs; % Time vector for 5 seconds  

ecgSignal = ecg(500*5); % Generate ECG signal  

Plot the ECG signal in time domain figure;  

plot(t, ecgSignal);  

title('ECG Signal in Time Domain'); 

 xlabel('Time (s)');  
ylabel('Amplitude'); 
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Figure 3.3: ECG signal in time domain 

B. Preprocessing the ECG Signal 

In practice, you would remove noise such as baseline wander or powerline interference 

using filters. For simplicity, we will skip this step here. 

C. Apply FFT to ECG Signal 

MATLAB Implementation 

FFT will transform the ECG signal from the time domain to the frequency domain. 

clear, clc, close all  

N = length(ecgSignal); % Number of points in the ECG signal 

ecgFFT = fft(ecgSignal); % Compute FFT of the ECG signal 

 

% Compute frequency axis 

f = (0:N-1)*(Fs/N); % Frequency vector 

P2 = abs(ecgFFT/N); % Two-sided amplitude spectrum 

P1 = P2(1:N/2+1); % Single-sided amplitude spectrum 
P1(2:end-1) = 2*P1(2:end-1); % Correcting the amplitude 

 

% Plot the FFT result (frequency spectrum) 

figure; 

plot(f(1:N/2+1), P1); 

title('Single-Sided Amplitude Spectrum of ECG Signal'); 

xlabel('Frequency (Hz)'); 

ylabel('|P1(f)|'); 
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Figure 3.4: Single-sided amplitude spectrum of ECG signal 

Interpretation 

 The x-axis represents the frequency in Hz. 

 The y-axis shows the amplitude of each frequency component. 

 You’ll observe a dominant peak corresponding to the heart rate (in Hz), and other peaks 

may represent noise or artifacts. 

3.2  Discrete Cosine Transform (DCT) 

The DCT is a Fourier-related transform similar to the Discrete Fourier Transform (DFT), but 

it uses only real numbers (cosine functions) instead of complex exponentials (sines and cosines). 

The main purpose of the DCT is to express a finite sequence of data points in terms of a sum of 

cosine functions oscillating at different frequencies. 

For an input signal (or image), the DCT transforms it into a sequence of coefficients that 

represent the signal’s energy distribution over various frequencies. The basic idea is that most of 

the signal’s information is concentrated in the low-frequency components, making it easier to 

compress. 

3.2.1 Mathematical Formulation 

The DCT transforms a sequence of real numbers 𝑥(𝑛), where n = 0,1,2,… , N − 1, into 

another sequence of real numbers 𝑋(𝑘), where k = 0,1,2, … ,N − 1, which represent the frequency 

coefficients.  

3.2.2 1D DCT Formula: 

The most common form is the DCT Type-II, which is typically what is referred to as "the 

DCT" in most applications. Its formula is: 

𝑋(𝑘) = 𝛼(𝑘)∑ 𝑥(𝑛)𝑁−1
𝑛=0 𝑐𝑜𝑠 (

𝜋(2𝑛+1)𝑘

2𝑁
), k=0, 1…, N-1 
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Where: 

 𝑥(𝑛) is the input sequence. 

 𝑋(𝑘) is the DCT coefficient for frequency k. 

 N is the length of the sequence.  

 α(k) is a normalization factor:  

𝛼(𝑘) =

{
 
 

 
 
√
1

𝑁
     𝑖𝑓  𝑘 = 0

√
2

𝑁
     𝑖𝑓  𝑘 ≠ 0

 

This normalization ensures that the DCT is orthonormal, which is crucial for certain properties 

such as energy preservation. 

 Example   

Let’s go through a simple example of calculating the DCT of a 4-point sequence. 

Input Sequence: 

Suppose the input sequence is 𝑥=[1,2,3,4]. 

𝑋(𝑘) = 𝛼(𝑘)∑ 𝑥(𝑛)𝑁−1
𝑛=0 𝑐𝑜𝑠 (

𝜋(2𝑛+1)𝑘

2𝑁
), k=0, 1…, N-1 

With N=4, the DCT coefficients 𝑋(𝑘) are calculated for k=0,1,2,3 

For 𝑘 = 0: 𝑋(0) = 𝛼(0)∑ 𝑥𝑁−1
𝑛=0 [𝑛]𝑐𝑜𝑠 (

𝜋(2𝑛+1)0

8
) =

1

2
(1 + 2 + 3 + 4) = 5 

For 𝑘 = 1: 𝑋(1) = 𝛼(0)∑ 𝑥𝑁−1
𝑛=0 [𝑛]𝑐𝑜𝑠 (

𝜋(2𝑛+1)1

8
) 

Substituting values, this gives 𝑋(1)≈−1.148. 

Similarly, we calculate 𝑋(2) and 𝑋(3), leading to the full DCT output



 

 
 

4 Chapter 4: Concepts of Characteristics 

and Classification of Physiological 

Signals  
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4.1 Characteristics of Physiological Signals 

Physiological signals are inherently complex due to their non-stationary nature and high 

variability. These signals vary based on the organ or system they originate from (e.g., heart, brain, 

muscles), the physiological state during the recording, and the type of signal being measured. 

Understanding their characteristics is essential for accurate interpretation and analysis.  

4.1.1 Types of Physiological Signals 

4.1.1.1 Electrocardiogram (ECG) 

Measures the electrical activity of the heart by recording voltage changes generated by the 

depolarization and repolarization of cardiac tissue. ECG signals are used to diagnose a variety of 

heart conditions, such as arrhythmias, ischemia, and myocardial infarction. These signals typically 

range between 0.05–150 Hz, and their characteristic components include the P-wave, QRS 

complex, and T-wave, which correspond to different phases of the cardiac cycle. 

4.1.1.2 Electroencephalogram (EEG) 

Captures the brain’s electrical activity by recording the voltage fluctuations produced by the 

collective firing of neurons. EEG signals are used to study brain function and diagnose 

neurological disorders such as epilepsy, sleep disorders, and brain injuries. They operate in lower 

frequency bands (0.1–100 Hz) and are often classified into different frequency ranges: delta, theta, 

alpha, beta, and gamma waves, each associated with specific brain states. 

4.1.1.3 Electromyogram (EMG) 

Monitors the electrical activity generated by skeletal muscles during contraction. EMG 

signals help in diagnosing neuromuscular diseases and assessing muscle function. The amplitude 

of EMG signals is generally higher compared to EEG and ECG, and they are more susceptible to 

artifacts due to external movements or noise. 

4.2 Characteristics of Physiological Signals 

4.2.1 Non-stationary nature 

Physiological signals often exhibit non-stationary behavior, meaning their statistical 

properties, such as mean and variance, change over time. For instance, an ECG waveform might 

vary due to changes in heart rate, while EEG patterns can shift depending on the subject's level of 

alertness. 

4.2.2 Periodicity 

Some physiological signals, such as ECG, display repetitive, cyclical patterns corresponding 

to biological rhythms (e.g., heartbeats), while others, like EEG, tend to have more irregular 

patterns with less periodicity. Understanding periodicity is critical for identifying and classifying 

abnormal patterns, such as arrhythmic heartbeats. 

4.2.3 Amplitude and frequency ranges 

The amplitude and frequency of physiological signals vary significantly. For example, ECG 

signals are typically low-frequency (0.05–150 Hz) and have relatively higher amplitude compared 

to EEG signals, which fall in the range of 0.1–100 Hz and have lower amplitude. 
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4.2.4 Noise and artifacts 

Physiological signals are often contaminated by noise from external sources (e.g., power-

line interference) or internal physiological processes (e.g., respiration in ECG). These artifacts can 

obscure important features and must be filtered out during preprocessing. 

4.3 Feature Extraction Methods 

Feature extraction is the process of transforming raw physiological signal data into a 

meaningful set of characteristics that reflect essential information for further analysis or 

classification. Different approaches are employed depending on whether the analysis is conducted 

in the time or frequency domain. 

4.3.1 Time-Domain Feature Extraction 

Time-domain features are derived directly from the signal without transforming it into 

another domain. These features are particularly useful for capturing the basic statistical properties 

of physiological signals. 

4.3.2 Mean and variance 

The mean provides the average amplitude of a signal, while variance indicates the degree of 

variability over time. These two measures are commonly used to describe the overall behavior of 

a signal, such as changes in EMG activity during muscle contractions. 

4.3.3 Root Mean Square (RMS) 

RMS is a standard measure of signal magnitude and is especially useful in EMG analysis, 

where it reflects the intensity of muscle activity. RMS is calculated by taking the square root of 

the mean of the squared signal values over a given time window. 

𝑅𝑀𝑆 = √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 

where 𝑥𝑖  is the signal value at time 𝑖, and N is the total number of samples. 

4.3.4 Zero-crossing rate 

This feature measures the rate at which a signal crosses the zero-amplitude line. It is 

especially useful for EMG signals to classify different phases of muscle activity, such as 

distinguishing between active muscle contraction and relaxation periods. 

4.4 Frequency-Domain Feature Extraction 

Frequency-domain analysis involves transforming the signal into its frequency components, 

which is particularly important for analyzing physiological signals like EEG, where different 

frequency bands are associated with specific brain states. 

4.4.1 Discrete Fourier Transform (DFT) and Short-Time Fourier Transform (STFT) 

The DFT decomposes a signal into its constituent frequencies, offering insight into its 

frequency content. STFT extends this by providing time-localized frequency information, making 

it useful for non-stationary signals such as EEG. 
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4.4.2 Power Spectral Density (PSD) 

PSD describes how the power of a signal is distributed across different frequencies. This 

measure is particularly important in EEG analysis, where the power within specific frequency 

bands (e.g., delta, theta, alpha, beta) can provide diagnostic information. 

4.4.3 Bandpower 

Bandpower refers to the total power of a signal within a specific frequency band. For 

instance, in EEG analysis, the alpha band (8–13 Hz) is associated with relaxation, and an increase 

in power in this band may indicate a relaxed mental state. 

4.5 Wavelet Transform 

The Wavelet Transform (WT) is a powerful tool for analyzing non-stationary signals like 

ECG and EMG. Unlike the Fourier Transform, which only provides frequency information, WT 

offers both time and frequency localization, making it highly effective for signals with transient 

features. 

4.5.1 Wavelet coefficients 

By decomposing a signal into wavelet coefficients at different scales, time-localized 

frequency information can be extracted, allowing for a detailed analysis of signal dynamics over 

time. 

4.6 Non-linear Feature Extraction 

For more complex physiological signals like EEG, non-linear features such as entropy, 

fractal dimensions, and Lyapunov exponents are often used. These features capture the chaotic or 

irregular nature of signals, providing additional insights into the underlying physiological 

processes. 

4.6.1 Detrended Fluctuation Analysis (DFA)  

DFA is a specialized technique for analyzing signals that demonstrate self-similarity and for 

identifying long-term correlations in non-stationary time series. Its straightforward approach and 

high effectiveness have led to its widespread use in diverse fields such as DNA sequencing, long-

term weather data, cloud structure studies, geology, ethnology, economic time series, and solid-

state physics. Additionally, it is applied in heart rate variability analysis and EEG signals. Because 

of the non-linear nature of EEG signals, Fractal Dimension analysis can be utilized to assess the 

irregularities present in brain activity. 

4.7 Classification Approaches 

After feature extraction, classifiers are used to distinguish between different physiological 

states or conditions (e.g., normal vs. abnormal heartbeats). The choice of classifier depends on the 

complexity and dimensionality of the feature space. 

4.7.1 Types of Classifiers 

4.7.1.1 Support Vector Machine (SVM) 

SVM constructs a hyperplane that maximizes the margin between different classes in the 

feature space. It is highly effective for handling high-dimensional data and is widely used in 
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physiological signal classification, such as distinguishing between normal and arrhythmic ECG 

signals. 

4.7.1.2 Artificial Neural Networks (ANN) 

ANNs consist of interconnected layers of artificial neurons and are capable of learning 

complex patterns in the data. They are widely used in physiological signal analysis, especially for 

detecting patterns in noisy and non-linear signals like EEG. 

4.7.1.3 K-Nearest Neighbors (KNN) 

KNN is a simple yet effective algorithm that classifies data points based on the majority class 

of their nearest neighbors in the feature space. It is easy to implement and works well for smaller 

datasets but may struggle with large, high-dimensional data. 

4.7.1.4 Random Forest 

Random Forest is an ensemble learning method that constructs multiple decision trees and 

aggregates their predictions. It is robust to noise and performs well on complex datasets with high 

variability, making it suitable for physiological signals like EMG and EEG. 

4.7.2 Training and Testing 

4.7.2.1 Training 

The classifier is trained using a labeled dataset, where the correct class of each signal is 

known. The goal is for the classifier to learn the relationship between features and their 

corresponding labels. 

4.7.2.2 Testing 

The classifier’s performance is evaluated on a separate test set that was not used during 

training. Performance metrics such as accuracy, sensitivity, specificity, and the area under the 

receiver operating characteristic (ROC) curve are commonly used. 

4.8 Performance Evaluation 

Evaluating the performance of classifiers in physiological signal analysis is essential for 

determining how accurately they can differentiate between various conditions like normal and 

abnormal heartbeats. This evaluation uses a combination of key metrics and methods, which 

include accuracy, sensitivity, specificity, cross-validation, and ROC curves. 

4.8.1 Accuracy, Sensitivity, and Specificity 

4.8.1.1 Accuracy 

The ratio of correctly predicted cases (both positive and negative) to the total number of 

cases. 

𝐴𝑐𝑐𝑢𝑟𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 TP (True Positives): Correctly classified positive cases (e.g., correctly detecting abnormal 

heartbeats). 

 TN (True Negatives): Correctly classified negative cases (e.g., correctly detecting 

normal heartbeats). 
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 FP (False Positives): Incorrectly classified cases as positive. 

 FN (False Negatives): Incorrectly classified cases as negative. 

Provides an overall measure of the model’s performance but may not be sufficient in imbalanced 

datasets, where normal signals far outnumber abnormal ones. 

4.8.1.2 Sensitivity (Recall) 

Measures the proportion of actual positives that are correctly identified (e.g., abnormal 

conditions). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Critical in physiological analysis because missing positive cases (e.g., failing to detect a heart 

condition) can have severe consequences. High sensitivity ensures that abnormal conditions are 

detected, minimizing false negatives. 

4.8.1.3 Specificity 

Measures the proportion of actual negatives that are correctly identified (e.g., normal 

conditions). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Important to avoid false alarms in physiological analysis (e.g., diagnosing a healthy individual 

with a condition), which could lead to unnecessary treatments or interventions.  

4.8.2 Cross-Validation 

Cross-validation is a technique used to assess how well a classifier generalizes to new data 

by splitting the dataset into training and testing subsets. 

4.8.2.1 k-Fold Cross-Validation 

The data is divided into k subsets (folds). The classifier is trained on k-1 folds and tested on 

the remaining fold. This is repeated k times, and the results are averaged. It provides a more 

accurate estimate of performance, reducing biases from any particular data split. For smaller 

datasets, it maximizes the use of available data. 

4.8.2.2 Leave-One-Out Cross-Validation (LOOCV) 

A special case where the model is trained on all but one sample, and tested on the remaining 

one, repeated for each sample. It offers an unbiased performance estimate but can be 

computationally expensive for large datasets. 

4.8.2.3 Stratified Cross-Validation 

Ensures that each fold maintains the same class distribution as the original dataset, 

particularly important when working with imbalanced data. It ensures that both normal and 

abnormal cases are well-represented in each fold. 
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4.8.3 ROC Curves and AUC 

4.8.3.1 ROC Curve (Receiver Operating Characteristic) 

A plot of the true positive rate (sensitivity) against the false positive rate (1-specificity) 

across different classification thresholds. It shows the trade-off between sensitivity and specificity. 

The shape of the ROC curve helps visualize how well a classifier can distinguish between different 

classes (e.g., normal vs. abnormal signals). 

4.8.3.2 AUC (Area Under the Curve) 

A single scalar value that summarizes the ROC curve performance. 

 AUC = 1.0: Perfect classification. 

 AUC = 0.5: No better than random guessing. 

Particularly useful in datasets where classes are imbalanced. A higher AUC indicates better 

discriminatory ability of the classifier, even when one class is more common than the other. 

4.9 Application for a Physiological Signal: ECG Analysis 

Feature extraction and classification methods are frequently applied in real-world scenarios, 

such as detecting arrhythmias in ECG signals. 

4.9.1 Feature Extraction in ECG 

4.9.1.1 R-peak detection 

R-peaks are the highest points in the ECG waveform and correspond to individual heartbeats. 

Detecting these peaks is essential for analyzing heart rate and heart rate variability (HRV). 

4.9.1.2 Heart Rate Variability (HRV) 

HRV measures the time variation between consecutive R-peaks and is used to assess 

autonomic nervous system activity. Reduced HRV is associated with conditions like arrhythmia 

and heart failure. 

4.9.1.3 Waveform morphology 

The shape, amplitude, and duration of the QRS complex in the ECG signal are analyzed to 

diagnose heart conditions. For example, a prolonged QRS complex may indicate bundle branch 

block or ventricular hypertrophy. 

4.9.2 Classifier Design for Arrhythmia Detection 

Extracted ECG features, such as R-peak intervals and QRS morphology, are used to train 

classifiers (e.g., SVM or ANN) to distinguish between normal and abnormal heartbeats. The 

classifier's performance is assessed by its ability to detect arrhythmias, with metrics such as 

accuracy, precision, and recall being used to evaluate its effectiveness. 

4.9.2.1 Real-Time Application 

In clinical settings, real-time ECG monitoring continuously extracts features and applies 

trained classifiers to detect abnormal heart conditions, enabling timely medical interventions. For 

example, wearable devices equipped with ECG sensors can alert patients or healthcare providers 

when arrhythmias are detected, leading to early diagnosis and treatment. 
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4.10 Application of SVM for Auditory Evoked Potentials (AEP) Classification Using 

MATLAB 

In this example, we developed an SVM classifier model using Radial Basis Function (RBF) 

kernel functions to distinguish between the normal hearing group and the hearing-impaired group, 

based on Fractal Dimension (FD) features extracted from Auditory Evoked Potentials (AEP) 

signals recorded from the participants. These signals, detected in the EEG auditory cortex area, are 

small electrical responses to sound stimuli, generated by the auditory pathway from the inner ear 

to the cerebral cortex. The AEP signals were recorded via electrodes attached to the scalp, 

measuring the bioelectric function of the auditory system. 

Twenty participants were involved in the experiment, divided equally into a normal hearing 

group and a hearing-impaired group. The AEP signals were stimulated at four distinct frequencies 

in both the right and left ears at a fixed sound intensity level of 20 dBHL. 

MATLAB Implementation 

clear, clc, close all  

load('C:\XX\svm_fractal_DFA_R500'); % Fractal Dimension values of all subjects (xdata) at 

a frequency of 500 Hz for the right ear 

g1=zeros(50,1); 

g2=ones(50,1); 

group=[g1;g2]; 

P=0.3; 

[TRAIN,TEST] = crossvalind('HoldOut',group,P); 

TrainingSample=xdata(TRAIN,:); 

TrainingLabel=group(TRAIN,1); 

TestingSample=xdata(TEST,:); 

TestingLabel=group(TEST,1); 

numfolds=5; 

Indices = crossvalind('Kfold', TrainingLabel, numfolds); 

%%  Training  SVM_RBF 

for i=1:numfolds 

   TestingFoldSample=TrainingSample(Indices==i,:); 

    TrainingFoldSample=TrainingSample(Indices~=i,:); 

    TraingFoldLabeL=TrainingLabel(Indices~=i,:); 

 Md = fitcsvm(TrainingFoldSample,TraingFoldLabeL,'KernelFunction', 'RBF'); 

    OutLabel_Train(Indices==i,1)=predict(Md,TestingFoldSample); 

end 

    accfol=sum(grp2idx(OutLabel_Train)==grp2idx(TrainingLabel))/length(TrainingLabel); 

%%  Testing  Grid_SVM_RBF 

 OutLabel_Test=predict(Md,TestingSample); 
acc_test_svm_RBF=sum(grp2idx(OutLabel_Test)==grp2idx(TestingLabel))/length((TestingLabel)) 
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The classification rates for the RBF kernel SVM classifier are provided in Table 4.1. 

Table 4.1: Classification Performance of SVM Model at Different Frequencies for the Right and Left Ear 

Fréquence (Hz) Ear Accuracy (%) Sensitivity (%) specificity (%) 

500 R 96.67 93.33 100 

1000 R 90.0 93.33 86.67 

2000 R 83.33 86.67 80.0 

4000 R 80.0 93.33 66.67 

500 L 83.33 73.33 93.33 

1000 L 86.67 73.33 100 

2000 L 83.33 86.67 80.0 

4000 L 90.0 86.67 93.33 

The model achieves its best performance at 500 Hz for the right ear, with the highest 

accuracy (96.67%) and perfect specificity (100%). The 4000 Hz left ear also performs well, 

showing high accuracy (90.0%), sensitivity (86.67%), and specificity (93.33%). However, the right 

ear at 4000 Hz has the lowest specificity (66.67%), indicating difficulties in classifying normal 

hearing individuals, and the left ear exhibits lower sensitivity (73.33%) at 500 Hz and 1000 Hz, 

suggesting challenges in detecting hearing impairment at these frequencies. Overall, the right ear 

excels at lower frequencies, while the left ear performs better at higher frequencies. 

4.11 Application of VGG19 and SVM for MRI Brain Tumor Classification Using 

MATLAB 

In this example, we developed a hybrid approach by combining the VGG19 and SVM 

models to classify MRI images into two categories: tumor class and non-tumor class. The dataset 

used in this study consists of 2,000 MRI images of the human brain, equally divided between these 

two classes. VGG19, a pre-trained convolutional neural network (CNN) with 19 layers trained on 

a large dataset (e.g., ImageNet), was employed to extract deep features from the MRI images. 

These features were then used to construct a feature vector, which was fed into an SVM classifier. 

The SVM was trained using a linear kernel function to classify the input MRI images into normal 

(non-tumor) and abnormal (tumor) categories. 

MATLAB Implementation 

clear,clc,close all 

net=vgg19; 

myFolder=fullfile('C:\XX\'); % Path to the file containing Brain Tumor Dataset 

categories={'no','yes'}; %Categories for Brain Tumor Classification 

 

imds=imageDatastore(fullfile(myFolder,categories),'LabelSource','foldernames'); 

[imdsTrain,imdsValidation]=splitEachLabel(imds,0.7,'randomized'); 

imsize=net.Layers(1).InputSize; 

normTrainingSet=augmentedImageDatastore(imsize,imdsTrain,"ColorPreprocessing","gray2rgb"

); 
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normTestingSet=augmentedImageDatastore(imsize,imdsValidation,"ColorPreprocessing","gray2

rgb"); 

fcFeature='fc8'; 

trainingFeatures=activations(net,normTrainingSet,fcFeature,'MiniBatchSize',32,'OutputAs','colu

mns' ); 

tesingValidationFeatures=activations(net,normTestingSet,fcFeature,'MiniBatchSize',32,'OutputA

s','columns' ); 

trainingLabels=imdsTrain.Labels; 

testningLabels=imdsValidation.Labels; 

 

t = templateSVM('KernelFunction','linear'); 

classifier_vgg=fitcecoc(trainingFeatures,trainingLabels,"Learners",t,ObservationsIn="columns")

; 

[label_vgg_Test,Pred_vgg_core]=predict(classifier_vgg,tesingValidationFeatures,"observationsI

n","columns"); 

acc_vgg_Test=sum((label_vgg_Test==testningLabels)/numel(testningLabels)) 

 

cm_VGG = confusionchart(testningLabels,label_validation_vgg) 

figure     %Confusion Matrix of the VGG19 Model for Binary Brain MRI Classification 

rocObj1 = rocmetrics(testningLabels,Pred_vgg_core,categories); 

plot(rocObj1,ClassNames=categories,ShowModelOperatingPoint=false); %ROC Curve for the 

VGG19 Model 

Figure 4.1 presents the confusion matrix for the VGG19 model used in the classification task. 

 
Figure 4.1:  Confusion Matrix of the VGG19 Model for Binary Brain MRI Classification 

The confusion matrix indicates that the classification model performs exceptionally well, 

with 291 true negatives (correctly predicted "no") and 288 true positives (correctly predicted 

"yes"). Misclassifications are minimal, with only 9 false positives (incorrectly predicted "yes") and 
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12 false negatives (incorrectly predicted "no"). Overall, the model achieves high accuracy 

(96.50%) and demonstrates strong precision and recall, effectively classifying both categories with 

few errors. The sensitivity of the model is 96%, indicating its ability to correctly identify positive 

cases, while its specificity is 97%, reflecting its effectiveness in identifying negative cases.  

The performance of VGG19 model using the AUC metric, which measures its effectiveness 

in differentiating between classes, is shown in figure 4.2 

 

 

Figure 4.2:  ROC Curve for the VGG19 Model 

 

The figure displays two ROC curves for a binary classification task, one for the "no" class 

and the other for the "yes" class, both with an AUC of 0.9869. This high AUC indicates excellent 

model performance, signifying that the classifier effectively distinguishes between the two classes 

with a high true positive rate and a low false positive rate. Overall, the VGG19 model demonstrates 

remarkable sensitivity and specificity, accurately predicting both classes with minimal errors. 
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5.1 Random signals 

A random signal 𝑋(𝑡)  is a function of random variables indexed by time 𝑡, with each 𝑋(𝑡) 

representing the value of the signal at a specific time. For each 𝑡, 𝑋(𝑡) can take on different values 

based on a probability distribution. The values of 𝑋(𝑡) at different time points can either be 

uncorrelated, as in the case of white noise, or correlated, as seen in autocorrelated signals, where 

the value at one time depends on previous values.  

Examples of random signals are: speech, audio, ECG, EEG, economic series… 

 Speech: Varies in pitch, amplitude, and content unpredictably.    

 Audio: Includes music and environmental sounds with complex, often unpredictable 

patterns.  

 ECG (Electrocardiogram): While generally periodic, it contains random variations in 

intervals and amplitudes.  

 EEG (Electroencephalogram): Brain activity signals that are highly complex and non-

stationary.  

Statistical properties used to describe random signals are:  

 The mean 𝜇𝑋 = 𝐸[𝑋(𝑡)], which is the expected value of the signal at time 𝑡.  

 The variance 𝜎𝑋
2 = 𝐸[(𝑋(𝑡) − 𝜇𝑋)

2], which describes how much the signal varies around 

the mean at time 𝑡. 

 The autocorrelation 𝑅𝑋(𝑡1, 𝑡2) = 𝐸[𝑋(𝑡1)𝑋(𝑡2)], measuring the relationship between the 

values at two different times 𝑡1 and 𝑡2. 

 Stationarity, which means the signal’s statistical properties (like mean and variance) do 

not change over time. 

Random signals are important in areas such as signal processing, where they are used for 

noise reduction and data transmission, communications, where they model noise and interference, 

and control systems, where they represent random disturbances or uncertainties in inputs. 

5.2 A Linear Time-Invariant (LTI) system 

A Linear Time-Invariant (LTI) system, such as filters, is a system for which both the 

properties of linearity and time invariance hold. An LTI system can be characterized by its impulse 

response, denoted as ℎ(𝑡). The impulse response ℎ(𝑡) is the output of the system when an impulse 

(represented by the Dirac delta function 𝛿(𝑡) is applied to the input.  

For any input signal 𝑥(𝑡), the output of the LTI system can be computed by convolving the 

input signal 𝑥(𝑡) with the system's impulse response ℎ(𝑡). The convolution is given by the 

following integral: 
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𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) = ∫ ℎ(𝜏)𝑥(𝑡 − 𝜏)
+∞

−∞

𝑑𝜏 

In the frequency domain, the input-output relationship becomes much simpler using the system’s 

transfer function 𝐻(𝑓): 

𝑌(𝑓) = 𝐻(𝑓)𝑋(𝑓) 

Where 𝑋(𝑓) and 𝑌(𝑓) are the Fourier transforms of the input and output signals, and 𝐻(𝑓) is the 

transfer function of the system. 

5.3 Memoryless Systems 

A memoryless system is characterized by an operator 𝐿, whose action at time 𝑡 depends only 

on the input signal at time 𝑡. Such a system does not take into account any previous or future states 

of the input signal. For a memoryless system, the response to an input signal 𝑥(𝑡)  is given by: 

𝑦(𝑡) = 𝐿[𝑥(𝑡)] 

Where: 

𝑦(𝑡) is the output, 

𝑥(𝑡) is the input, 

𝐿 represents the system function that relates input to output. 

In a memoryless system, there is no integration or differentiation involved in the system’s 

operation, making it instantaneous. 

 A simple linear amplifier is a perfect example of a memoryless system. For an input 

𝑥(𝑡), the amplifier gives an output 𝑦(𝑡) as: 

𝑦(𝑡) = 𝐴𝑥(𝑡) 

 

Where 𝐴 is a constant gain. This system has no memory since the output at any time t depends 

only on the input at time t. 

 A diode that clips signals based on certain thresholds can also be modeled as a 

memoryless system but with a nonlinear response: 

𝑦(𝑡) = {

𝑥(𝑡)     𝑖𝑓 |𝑥(𝑡)| < 𝑉𝑐𝑙𝑖𝑝
𝑉𝑐𝑙𝑖𝑝      𝑖𝑓 𝑥(𝑡) > 𝑉𝑐𝑙𝑖𝑝
−𝑉𝑐𝑙𝑖𝑝   𝑖𝑓 𝑥(𝑡) < −𝑉𝑐𝑙𝑖𝑝

 

Here, 𝑉𝑐𝑙𝑖𝑝 is the clipping threshold. 
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5.4 Systems with Memory 

A system is said to have memory when the present output depends on past input values, 

meaning the past affects the present. In contrast, a causal system is one where the output at any 

time depends only on current and past inputs, but never on future inputs. In real-world physical 

systems, the future cannot influence the present, which means these systems are inherently non-

anticipatory. This principle of causality ensures that physical systems do not rely on future 

information for their present state, making them causal by nature. 

5.5 Characteristics of Memoryless Systems 

5.5.1 Instantaneous Response 

 The output is an immediate function of the input. There is no delay, and no historical data is 

stored. 

5.5.2 Causality 

 A memoryless system can be causal (output depends on the present input) or non-causal (if 

it depends on future inputs), but for most practical physical systems, it’s causal. 

5.5.3 Linearity 

Memoryless systems can be either linear or nonlinear depending on how the input 𝑥(𝑡) is 

transformed into the output. 

5.6 Response of Memoryless Systems to Random Signals 

When the input to a memoryless system is a random signal 𝑥(𝑡), the output 𝑦(𝑡) inherits the 

randomness of the input. However, the statistical properties of the output can still be determined 

if the input properties are known.   

Example 

 Let’s assume that the random input 𝑥(𝑡) has a Gaussian distribution with mean 𝜇𝑥 and 

variance 𝜎𝑥
2. If the system is a linear memoryless system with a gain 𝐴, the output 𝑦(𝑡) will also 

have a Gaussian distribution: 

 Mean of output: 𝜇𝑦=A⋅𝜇𝑥. 

 Variance of output: 𝜎𝑦
2 = 𝐴2𝜎𝑥

2. 

For a nonlinear memoryless system, the statistical properties of the output are more complex and 

often require specialized techniques such as moment-generating functions to calculate. 

5.7 Power Spectral Density (PSD) 

5.7.1 Densities of Energy Spectral Density and Power Spectral Density 

The Fourier transform of the autocorrelation function is called the power spectral density 

(for signals with finite average power) or the energy spectral density (for signals with finite 
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energy). This allows us to analyze how the signal's power or energy is distributed across different 

frequencies. 

The power spectral density (PSD) is given by the following expression: 

𝑆𝑥(𝑓) = ∫ 𝑅𝑥(𝜏)𝑒
−𝑗2𝜋𝑓𝜏𝑑𝜏

+∞

−∞

 

Where: 

𝑆𝑥(𝑓) is the power spectral density at frequency 𝑓, 

𝑅𝑥(𝜏) is the autocorrelation function of the signal. 

Unit: The unit of PSD is power per frequency unit (e.g., watts per hertz). 

Total Power: The total power of the signal can be calculated by integrating the PSD across all 

frequencies: 

𝑃 = ∫ 𝑆𝑥(𝑓)𝑑𝑓
+∞

−∞

 

This total power represents the average power of the signal. 

5.7.2 Properties of Power Spectral Density 

5.7.3 Non-negativity 

 𝑆𝑥(𝑓) is always non-negative since it represents power. 

5.7.4 Symmetry 

For real-valued signals, 𝑆𝑥(𝑓) is symmetric around 𝑓 = 0, meaning 𝑆𝑥(𝑓) = 𝑆𝑥(−𝑓).  

5.7.4.1 Wiener-Khinchin Theorem 

 This theorem establishes the relationship between the autocorrelation function and the power 

spectral density. It allows us to compute the PSD from the autocorrelation. 

5.8 Methods to Estimate Power Spectral Density 

Estimating the Power Spectral Density (PSD) of a continuous-time signal can be done using 

two main types of methods: Non-parametric Methods (Model-free) and Parametric Methods 

(Model-based). 

The choice between these methods depends on the signal's characteristics and the data available. 

Each has advantages, and the best method for a given scenario depends on factors like 

computational efficiency, resolution needs, and the signal's nature. PSD estimation helps analyze 

the frequency content and power distribution of signals, which is critical in various signal 

processing applications. 
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5.8.1 Non-parametric Methods 

These methods do not assume a specific model for the signal and rely directly on the data to 

estimate the PSD. 

5.8.1.1 Periodogram 

A widely used and straightforward technique is the periodogram, which estimates the power 

spectral density (PSD) by calculating the squared magnitude of the Fourier transform of the signal:  

𝑃𝑥(𝑓) =
1

𝑇
|𝑋(𝑓)|2 

where 𝑇 is the observation period, and 𝑋(𝑓) is the Fourier transform of the signal. The 

periodogram is computationally efficient, but it can exhibit high variance, particularly for short 

observation periods. 

Pros: 

 Simple and easy to implement. 

 Computationally efficient, especially with the Fast Fourier Transform (FFT). 

 Cons: 

 High variance: The periodogram can give noisy PSD estimates, especially for short signals. 

 Spectral leakage: If the signal is not periodic within the observation window, the energy 

leaks into other frequency bins, leading to inaccurate PSD estimates. 

5.8.1.2 Welch’s Method 

Welch's method is a technique used to reduce the variance of the periodogram for estimating 

the power spectral density (PSD) of a signal. It works by dividing the signal into overlapping 

segments, applying a window function to each segment to reduce spectral leakage, and then 

computing and averaging the periodograms for each segment. This results in a smoother and more 

reliable estimate of the PSD compared to the basic periodogram method. 

Pros: 

 Lower variance compared to the simple periodogram. 

 Better for stationary signals (those whose statistical properties don’t change over time). 

Cons: 

 Reduced frequency resolution due to averaging. 

 Can still suffer from spectral leakage, although windowing helps mitigate this. 

5.8.1.3 Blackman-Tukey Method 

This method uses the autocorrelation function of the signal, which is windowed, and then 

applies the Fourier transform to the autocorrelation function to estimate the PSD. It’s based on the 
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Wiener-Khinchin theorem, which states that the Fourier transform of the autocorrelation function 

equals the PSD. 

Pros 

 flexibility in choosing the window function for the autocorrelation sequence. 

 A smoother PSD estimate than the periodogram due to the averaging inherent in the 

autocorrelation. 

 Cons 

 Tradeoff between resolution and variance: A larger window length improves frequency 

resolution but increases variance. 

 More computationally intensive than the periodogram. 

5.8.1.4 Multitaper Method 

1  

2 The multitaper method effectively reduces variance in power spectral density (PSD) estimation 

by employing multiple orthogonal tapers (or windows) to generate several independent PSD 

estimates, which are subsequently averaged. Specifically, this process involves applying multiple 

tapers, such as Slepian sequences, to the signal, estimating the PSD for each tapered version of the 

signal, and then averaging these estimates to yield a final PSD estimate. This approach is designed 

to minimize spectral leakage and reduce bias in the results. 

Pros: 

 Provides a good tradeoff between bias and variance. 

 Effective in reducing spectral leakage and variance simultaneously. 

 Better suited for signals with complex spectral characteristics. 

Cons: 

 More computationally expensive due to the use of multiple tapers. 

 The choice of tapers and the number of tapers can affect the final estimate. 

5.8.2 Parametric Methods 

These techniques rely on the premise that the signal can be modeled using a specific 

structure, such as an autoregressive (AR), moving average (MA), or autoregressive-moving-

average (ARMA) process. By estimating the parameters associated with these models, the power 

spectral density (PSD) can be calculated. This method takes advantage of the established structure 

of the signal, facilitating a more precise estimation of the PSD in comparison to non-parametric 

approaches. 
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5.8.2.1 Autoregressive (AR) Model-Based Methods 

These methods assume that the signal can be modeled as an autoregressive (AR) process. 

The power spectral density (PSD) can then be computed by estimating the parameters of the AR 

model. 

 The PSD is given by:  

𝑆𝑥(𝑓) =
𝜎2

|1 − ∑ 𝑎𝑘𝑒−𝑗2𝜋𝑓𝑘
𝑝
𝑘=1

|
2 

Where 𝑎𝑘 are the AR model coefficients, and 𝜎2 is the noise variance. 

Pros: 

 Provides good frequency resolution, especially for signals with sharp spectral peaks.  

 Effective for signals with narrowband features. 

Cons: 

 Poor at modeling broadband signals. 

 Requires careful selection of model order ppp, which can be challenging. 

5.8.2.2 Moving Average (MA) Model 

The MA model assumes the signal can be represented as the output of an all-zero filter 

driven by white noise. The signal depends on a weighted sum of current and past noise terms: 

𝑥(𝑡) = ∑𝑏𝑘

𝑞

𝑘=0

𝜖(𝑡 − 𝑘) 

where 𝑏𝑘  are the MA coefficients and 𝜖(𝑡) is white noise. 

Pros: 

 Well-suited for modeling signals with deep spectral nulls. 

 Simpler for signals that exhibit rapid changes. 

Cons: 

 Less commonly used because it can be numerically unstable and doesn’t work as well 

with sharp spectral peaks. 

 Sensitive to noise. 

5.8.2.3 Autoregressive Moving Average (ARMA) Model 

The ARMA model combines both the AR and MA models, assuming the signal is the 

output of a filter that has both poles and zeros, driven by white noise:  
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𝑥(𝑡) = ∑𝑎𝑘

𝑝

𝑘=1

𝑥(𝑡 − 𝑘) +∑𝑏𝑘

𝑞

𝑘=0

𝜖(𝑡 − 𝑘) 

This provides greater flexibility in modeling a wide range of signals. 

Pros: 

 More flexible than either AR or MA models alone, capable of modeling both narrowband 

and broadband signals. 

Cons: 

 More complex parameter estimation due to the combined AR and MA components. 

 Selecting both the AR and MA orders can be challenging. 

5.8.2.4 Prony’s Method 

Prony’s method fits a sum of complex exponentials to the signal by solving a set of linear 

equations. This technique is useful for modeling signals with sharp spectral peaks, such as damped 

sinusoids. 

Pros: 

 Very accurate for signals with sharp spectral peaks. 

 Effective in applications like radar, sonar, and modal analysis. 

Cons: 

 Highly sensitive to noise, which can lead to instability in the model. 

 Computationally intensive due to the matrix operations involved in solving the system of 

equations. 

Each method comes with its own advantages and drawbacks. Non-parametric methods are 

generally simpler to implement but can experience high variance or lower resolution. In contrast, 

parametric methods provide improved resolution for certain types of signals but necessitate a 

precise model and careful selection of parameters. The selection of an appropriate method is 

influenced by the unique characteristics of the signal and the specific requirements of the analysis. 

5.9 Applications of Power Spectral Density 

 Signal Processing: PSD is widely used to analyze the frequency content of signals, 

especially in communications and audio processing. 

 Noise Analysis: Engineers use PSD to understand the frequency content of noise in 

systems, which helps in designing filters and improving signal quality. 
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 Biomedical Applications: PSD is used in EEG analysis to understand the brain’s activity 

and in ECG analysis for heart rate variability studies. 

5.10 Response of LTI Systems to Random Signals 

When the input to an LTI system is a random signal, the output is also a random signal. If 

the input is characterized by its PSD 𝑆𝑥(𝑓), the PSD of the output can be computed using the 

transfer function 𝐻(𝑓): 

𝑆𝑦(𝑓) = |𝐻(𝑓)|
2𝑆𝑥(𝑓) 

This equation shows how the system shapes the frequency content of the input signal. 

Example 

Consider an LTI system characterized by the impulse response ℎ(𝑡) = 𝑒−𝑡𝑢(𝑡),  where 𝑢(𝑡) is the 

unit step function. A random signal 𝑥(𝑡) is defined as a white Gaussian noise process with zero 

mean and power spectral density 𝑆𝑥(𝑓) =
𝑁0

2
, where 𝑁0 is a constant.  

a) Determine the output of the LTI system 𝑥(𝑡)  in terms of the input 𝑥(𝑡). 

b) Calculate the power spectral density 𝑆𝑦(𝑓) of the output signal 𝑦(𝑡). 

c) Find the variance of the output signal 𝑦(𝑡). 

Solution 

a) The output 𝑦(𝑡) of an LTI system to an input 𝑥(𝑡) can be computed using the convolution 

of the input signal 𝑥(𝑡) with the system's impulse response ℎ(𝑡): 

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)
+∞

−∞

𝑑𝜏 

𝑦(𝑡) = ∫ 𝑥(𝜏)𝑒−(𝑡−𝜏)𝑢(𝑡 − 𝜏)
+∞

−∞

𝑑𝜏 

= ∫ 𝑥(𝜏)𝑒−(𝑡−𝜏)
𝑡

−∞

𝑑𝜏 

b) The relationship between the input and output power spectral densities for an LTI system 

is given by: 

𝑆𝑦(𝑓) = |𝐻(𝑓)|
2𝑆𝑥(𝑓) 

𝐻(𝑓) = ℱ[ℎ(𝑡)] 

= ℱ[𝑒−𝑡𝑢(𝑡)] 
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=
1

1 + 𝑗2𝜋𝑓
 

|𝐻(𝑓)|2 = |
1

1 + 𝑗2𝜋𝑓
|
2

 

=
1

1 + (2𝜋𝑓)2
 

𝑆𝑦(𝑓) =
1

1 + (2𝜋𝑓)2
.
𝑁0
2

 

=
𝑁0

2(1 + (2𝜋𝑓)2)
 

c) The variance of the output signal 𝑦(𝑡) can be determined from its power spectral density. 

The variance 𝜎𝑦
2 is given by:  

𝜎𝑦
2 = ∫ 𝑆𝑦(𝑓)

+∞

−∞

𝑑𝑓 

𝜎𝑦
2 = ∫

𝑁0
2(1 + (2𝜋𝑓)2)

+∞

−∞

𝑑𝑓 

This integral can be evaluated using a standard result from integral calculus: 

∫
1

𝑥2 + 𝑎2

+∞

−∞

𝑑𝑥 =
𝜋

𝑎
 

𝜎𝑦
2 =

𝑁0
8𝜋2

∫
1

(
1
2𝜋)

2

+ 𝑓2

+∞

−∞

𝑑𝑓 

=
𝑁0
8𝜋2

.
𝜋

1
2𝜋

 

=
𝑁0
4

 

Example2 

An LTI system is characterized by the impulse response ℎ(𝑡) = 𝑒−𝑡𝑢(𝑡),  where 𝑢(𝑡) is the unit 

step function. The input signal 𝑥(𝑡) is a wide-sense stationary (WSS) random process with the 

following characteristics: 

Mean: 𝐸[𝑥(𝑡)] = 5 
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Autocorrelation function: 𝑅𝑥(𝜏) = 𝜎𝑥
2𝑒−𝛼|𝜏|,  where 𝜎𝑥

2 = 4 and 𝛼 = 2 

a) Find the mean 𝐸[𝑦(𝑡)] of the output signal 𝑦(𝑡). 

b) Determine the output autocorrelation function 𝑅𝑦(𝜏) of the system. 

c) Calculate the output variance 𝜎𝑦
2. 

Solution  

a) Mean of the Output Signal 𝐸[𝑦(𝑡)] 

The mean of the output signal 𝑦(𝑡) is related to the mean of the input signal 𝑥(𝑡) through the 

impulse response of the system. The general expression for the mean of the output is given by:  

𝐸[𝑦(𝑡)] = ∫ ℎ(𝜏)𝐸[𝑥(𝑡 − 𝜏)]𝑑𝜏
+∞

−∞

 

Since 𝑥(𝑡)  is a WSS process and its mean 𝐸[𝑥(𝑡)] = 5 is constant, the equation simplifies to: 

𝐸[𝑦(𝑡)] = 𝐸[𝑥(𝑡)]∫ 𝑒−𝜏𝑑𝜏
+∞

0

 

The integral evaluates as: 

∫ 𝑒−𝜏𝑑𝜏
+∞

0

= 1 

Thus, the mean of the output signal is: 

𝐸[𝑦(𝑡)] = 5 × 1 = 5 

b) The output autocorrelation function 𝑅𝑦(𝜏) 

The output autocorrelation function 𝑅𝑦(𝜏) is related to the input autocorrelation function 𝑅𝑥(𝜏) 

through the convolution of the impulse response ℎ(𝑡) with itself. The expression is given by: 

The expression is given by: 

𝑅𝑦(𝜏) = ∬ ℎ(𝑡1)ℎ(𝑡2)

+∞+∞

−∞−∞

𝑅𝑥(𝑡2 − 𝑡1 + 𝜏)𝑑𝑡1𝑑𝑡2 

Given that the impulse response is ℎ(𝑡) = 𝑒−𝑡𝑢(𝑡), and the input autocorrelation function is 

𝑅𝑥(𝜏) = 𝜎𝑥
2𝑒−𝛼|𝜏|, this becomes: 

𝑅𝑦(𝜏) = 4 ∬ 𝑒−𝑡1𝑒−𝑡2

+∞ +∞

0 0

𝑒−2|𝑡2−𝑡1+𝜏|𝑑𝑡1𝑑𝑡2 
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Breaking the expression into two cases for 𝑡2 − 𝑡1 + 𝜏 being positive or negative, the integration 

gives: 

𝑅𝑦(𝜏) =
4

2(2 + 1)
𝑒−3|𝜏| 

=
2

3
𝑒−3|𝜏| 

c) Output Variance 𝜎𝑦
2 

The variance of the output signal is simply the value of the output autocorrelation function 

evaluated at 𝜏 = 0:  

𝜎𝑦
2 = 𝑅𝑦(0) 

=
2

3
𝑒0 

=
2

3
 

 

5.11 Applications of Random Signal Response in LTI Systems 

 Communication Systems: In wireless communication, the random noise added during 

transmission can be analyzed using the PSD, allowing for noise reduction techniques to 

be applied. 

 Control Systems: For random disturbances acting on a system, the PSD helps in 

designing controllers that minimize the impact of these disturbances. 
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	The Z-transform is a widely used tool for studying digital signal processing systems. It plays a role analogous to that of the Laplace transform in continuous-time systems.

	The bilateral Z-transform of a discrete-time signal 𝑥,𝑛. is defined by:
	1.2.1  Examples of Z-Transform
	Example 1
	Let the following discrete-time signal be:
	1.2.2 Properties of the Z-Transform
	1.5.
	1.5.1.
	1.5.2.
	1.2.2.1 Linearity
	1.2.2.2 Time shifting
	1.2.2.3 Scaling in Z- Domain
	1.2.2.4 Time reversal
	1.2.2.5 Differentiation in Z- Domain
	1.2.2.6 Convolution property

	1.2.3  Inverse Z-Transform
	Table 1.1: Z-Transforms and Inverse Z-Transforms of Common Functions

	1.3 Digital Filtering
	A digital filter is a system that processes discrete-time signals by applying mathematical operations to modify or enhance certain aspects of the signal. It operates on sequences of data (e.g., audio or sensor data) and is characterized by its transmi...
	3.
	1.3.1 Transmittance in Z of a Digital Filter:
	1.3.2 Algorithm for calculating  𝐲,𝐧.
	1.3.3 Transition from the Algorithm to T(z)
	1.3.4  Transition from T(z) to the algorithm
	Example We aim to find the calculation algorithm of the filter characterized by the following transmittance T,z.:
	1.3.5 Stability of a digital filter
	1.3.6 Representation of a Digital Filter
	A digital filter can be represented using several types of specifications, including:
	2.
	2.1.
	2.2.
	2.3.
	2.4.
	2.5.
	1.3.6.1 Z-Transfer Function

	This is the most common representation. It links the input and output in the Z-plane as 𝑌,𝑧.=𝐻,𝑧..𝑋,𝑧.. Going forward, we will assume:
	𝐻,𝑧.=,𝑁,𝑧.-𝐷,𝑧..=,,𝑖=0-𝑁-,𝑏-𝑖.,𝑧-−𝑖..-1+,𝑖=1-𝑁-,𝑎-𝑖.,𝑧-−𝑖... Where 𝑁,𝑧. is the numerator polynomial of the transfer function, and 𝐷,𝑧. is its denominator. Here, N represents the filter's order. If 𝐻,𝑧. has poles, the filter is ...
	1.3.6.2 Impulse Response

	The impulse response is the inverse Z-transform of 𝐻,𝑧..
	1.3.6.3 Difference Equation
	An inverse Z-transform of the equation from the first representation leads to the following form:

	1.3.7 Specifications of a Digital Filter
	2.6.
	1.3.7.1 Low-pass filters

	allow frequencies below a cutoff frequency ,𝑓-𝑐. to pass and block those above it (see Figure 1.9.a).
	1.3.7.2 High-pass filters

	block frequencies below a cutoff frequency ,𝑓-𝑐. and allow those above it to pass (see Figure 1.9.b).
	1.3.7.3 Band-pass filters

	allow frequencies around a central frequency ,𝑓-0.(or between ,𝑓-,𝑐-1.. and ,𝑓-,𝑐-2..) to pass and block others (see Figure 1.9.c).
	1.3.7.4 Band-stop filters

	block frequencies around a central frequency ,𝑓-0.(or between ,𝑓-,𝑐-1.. and ,𝑓-,𝑐-2..) and allow others to pass (see Figure 1.9.d).


	Figure 1.10:  Ideal and actual frequency response of lowpass filters
	1.4 Classification of Digital Filters
	1.4.1 Finite Impulse Response (FIR) Digital Filters
	2.7.
	1.4.1.1 Characteristics of FIR Filters

	The main characteristics of FIR filters are:
	1.4.1.2 Structure of FIR Filters
	 Direct Form FIR Filter
	 Direct Form Transposed FIR Filter

	1.4.2 Advantages of FIR Filters
	1.4.3 Disadvantages of FIR Filters
	1.4.4 FIR Filter Design
	1.4.4.1 FIR Filter Design by Windowing
	Figure 1.13: Impulse response of an ideal lowpass filter with ,𝜔-𝑐.=,𝜋-4.
	Figure 1.14: Truncated impulse response: linear-phase, but non-causal
	Figure 1.15: Truncated impulse response: causal, but nonlinear-phase
	Figure 1.16: Truncated impulse response: causal and linear phase
	Figure 1.17: Frequency response of the filter designed by a rectangular window


	Summary
	1.4.4.2 Frequency Sampling Method


	1.5 Infinite Impulse Response (IIR) Digital Filters
	Analog filters inherently have an infinite impulse response. IIR digital filters behave similarly, except for the effects caused by discretization. This category of filter is also characterized by a transfer function in the z-domain that contains pole...
	2.8.
	1.5.1 IIR Filter Topologies
	 Direct Type I
	 Direct Type II
	 Transposed Type II

	1.5.2 IIR Filter Design
	 IIR Filter Design Using Bilinear Transformation
	where T is the sampling period.
	Example
	Design a digital low-pass Butterworth filter using the bilinear transformation method with the following specifications:
	 Analog cutoff frequency: ,𝜔-𝑐.=1000 ,𝑟𝑎𝑑-𝑠.
	 Sampling frequency: ,𝐹-𝑠.=8000 𝐻𝑧
	 Order of the filter: N=1 (first-order Butterworth filter)
	Step-by-Step Solution:
	Step 1: Define the Analog Filter Transfer Function
	The transfer function of a first-order analog Butterworth filter is given by:
	𝐻,𝑝.=,,𝜔-𝑐.-𝑝+,𝜔-𝑐..
	where ,𝜔-𝑐.=1000 rad/s is the analog cutoff frequency.
	Thus, the analog transfer function becomes:
	𝐻,𝑝.=,1000-𝑝+1000.
	Step 2: Apply the Bilinear Transformation
	The bilinear transformation is given by:
	,2-𝑇. ,1−,𝑧-−1.-1+,𝑧-−1..
	where  𝑇=,1-,𝐹-𝑠..=8000=0.000125 seconds is the sampling period.
	Substituting this into the analog transfer function 𝐻,𝑝., we replace s with the bilinear transformation:
	𝐻,𝑧.=𝐻(,2-𝑇. ,1−,𝑧-−1.-1+,𝑧-−1..)
	First, calculate the term: 𝑝=,2-0.000125. ,1−,𝑧-−1.-1+,𝑧-−1..=16000,1−,𝑧-−1.-1+,𝑧-−1..
	Now, substitute this into the analog transfer function:
	𝐻,𝑧.=,1000-16000,1−,𝑧-−1.-1+,𝑧-−1..+1000.
	Simplify the expression:
	𝐻,𝑧.=,1000(1+,𝑧-−1.)-16000(1−,𝑧-−1.)+1000(1+,𝑧-−1.).
	𝐻,𝑧.=,1000(1+,𝑧-−1.)-17000−1500,𝑧-−1..
	Step 3: Final Digital Filter Transfer Function
	Thus, the digital filter's transfer function becomes:
	𝐻,𝑧.=,1000(1+,𝑧-−1.)-17000−1500,𝑧-−1.. (1)
	We can simplify this by dividing both the numerator and the denominator by 17000:
	𝐻,𝑧.=,,1000-17000.(1+,𝑧-−1.)-1−,1500-17000.,𝑧-−1..
	𝐻,𝑧.=,0.0588(1+,𝑧-−1.)-1−0.8824,𝑧-−1..
	Step 4: Difference Equation Form
	The digital filter transfer function can now be converted into the time-domain difference equation using:
	𝐻,𝑧.,𝑌(𝑧)-𝑋(𝑧).=,0.0588(1+,𝑧-−1.)-1−0.8824,𝑧-−1..
	This corresponds to the following difference equation:
	𝑦,𝑛.−0.8824𝑦,𝑛−1.=0.0588×𝑥,𝑛.+0.0588×𝑥,𝑛−1.
	Or  equivalently:
	𝑦,𝑛.=0.8824𝑦,𝑛−1.+0.0588×𝑥,𝑛.+0.0588×𝑥,𝑛−1.
	In this example, we designed a digital low-pass Butterworth filter using the bilinear transformation method. We started with an analog Butterworth filter with a cutoff frequency of 1000 rad/s and a sampling frequency of 8000 Hz. After applying the bil...
	1.5.2.1 Advantages of IIR digital filters
	1.5.2.2 Disadvantages of IIR digital filters

	Figure 1.24: Example of filtering on a sound file
	Application of a filter for edge detection


	2 Chapter 2: Averaging Filter and Median Filter
	1.
	2.
	2.1 Averaging Filter
	1. (1)
	2. (1)
	2.1.1 Example Application for a Physiological Signal
	2.1.2 Local Averaging Filter Application in Medical Imaging

	2.2 Median filter
	What Is Median Filtering?
	,,22 24 27-31 98 29-27 22 23..
	This image has a significant amount of salt-and-pepper noise, namely the black and white pixels that appear out of place Median filtering is excellent at reducing this type of noise. The filtering algorithm will scan the entire image, using a small ma...
	With the example above, the sorted values are [22, 22, 23, 24, 27, 27, 29, 31, 98], and median of this set is 27. Let’s apply the filter and see how it looks:
	Left: original image with noise. Right: Image with median filter applied.
	Figure 2.8: Example of Denoising Salt-and-Pepper Noise Using median filter
	Look at that! Basically all of the salt-and-pepper noise is gone! Now, let’s compare this to a Gaussian filter and see if there is a difference:
	Figure 2.9: Comparison of Median Filtering (Left) and Gaussian Filtering (Right)
	As we can see, the Gaussian filter didn’t get rid of any of the salt-and-pepper noise! The neat thing about a median filter is that the center pixel value will be replaced by a value that is present in the surrounding pixels. This differs from Gaussia...


	3 Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)
	3.1 Discrete Fourier Transform (DFT)
	When we want to compute the Fourier transform of a function 𝑥(𝑡) using a computer, since the computer only has a finite number of words of finite size, we are led to:
	 Discretize the time-domain function,
	 Truncate the time-domain function,
	 Discretize the frequency-domain function.
	Figure 3.1: Steps for Computing the Fourier Transform on a Computer: Discretization and Truncation
	𝑋,𝑓.=,−∞-+∞-𝑥,𝑡.,𝑒-−𝑗2𝜋𝑓𝑡.𝑑𝑡.
	,𝑥-∗.,𝑡.=𝑥(𝑡),𝑛=−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.).
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.)𝛿(𝑡−𝑛,𝑇-0.).
	,𝑋-∗.,𝑓.=,−∞-+∞-,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.)𝛿(𝑡−𝑛,𝑇-0.),𝑒-−𝑗2𝜋𝑓𝑡.𝑑𝑡..
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.),𝑒-−𝑗2𝜋𝑓𝑡..𝑑𝑡
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.),𝑒-−𝑗2𝜋𝑓𝑛,𝑇-0...𝑑𝑡
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑓𝑛,𝑇-0..,−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.).𝑑𝑡
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑓𝑛,𝑇-0..    where:,−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.).𝑑𝑡=1
	,𝑋-∗.,𝑓.=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑓𝑛,𝑇-0..
	On the other hand, we have:
	,𝑥-∗.,𝑡.=𝑥(𝑡),𝑛=−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.). (1)
	,𝑋-∗.,𝑓.=𝑋(𝑓)∗𝑇𝐹,,𝑛=−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.)..
	𝑇𝐹,,𝑛=−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.)..=𝑇𝐹,,𝑛=−∞-+∞-,𝐶-𝑛.,𝑒-𝑗2𝜋𝑛,𝑓-0.𝑡...
	,𝐶-𝑛.=,1-,𝑇-0..,−,,𝑇-0.-2.-,,𝑇-0.-2.-𝛿,𝑡.𝑑𝑡=,1-,𝑇-0..=,𝑓-0..
	𝑇𝐹,,𝑛=−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.)..=,𝑓-0.𝑇𝐹,,𝑛=−∞-+∞-,𝑒-𝑗2𝜋𝑛,𝑓-0.𝑡...
	,=𝑓-0.,−∞-+∞-,𝑛=−∞-+∞-,𝑒-𝑗2𝜋,𝑛𝑓-0.𝑡.,×𝑒-−𝑗2𝜋𝑓𝑡.𝑑𝑡..
	,=𝑓-0.,−∞-+∞-,𝑛=−∞-+∞-,𝑒-−𝑗2𝜋,(𝑓−𝑛𝑓-0.)𝑡.𝑑𝑡..
	,=𝑓-0.,𝑛=−∞-+∞-,−∞-+∞-,𝑒-−𝑗2𝜋,(𝑓−𝑛𝑓-0.)𝑡.𝑑𝑡..
	,=𝑓-0.,𝑛=−∞-+∞-𝛿(𝑓−𝑛,𝑓-0.).
	,𝑋-∗.,𝑓.=𝑋(𝑓)∗𝑇𝐹,,𝑛=−∞-+∞-𝛿(𝑛−𝑛,𝑇-0.)..
	,𝑋-∗.,𝑓.=𝑋(𝑓)∗,𝑓-0.,𝑛=−∞-+∞-𝛿(𝑓−𝑛,𝑓-0.).
	,                                =𝑓-0.,−∞-+∞-𝑋(𝜏),𝑛=−∞-+∞-𝛿,,𝑓−𝑛,𝑓-0..−𝜏.𝑑𝜏..
	,                                   =𝑓-0.,−∞-+∞-𝑋(𝜏),𝑛=−∞-+∞-𝛿,𝜏−,𝑓−𝑛,𝑓-0...𝑑𝜏..
	,=𝑓-0.,𝑛=−∞-+∞-𝑋(𝑓−𝑛,𝑓-0.).
	,𝑋-∗.,𝑓.,=𝑓-0.,𝑛=−∞-+∞-𝑋(𝑓−𝑛,𝑓-0.).
	𝑓=𝑘∆𝑓
	,𝑓-0.=𝑁∆𝑓→∆𝑓=,,𝑓-0.-𝑁.=,1-,𝑁𝑇-0..
	,𝑋-∗.,𝑓.=,𝑛=−∞-+∞-,𝐶-𝑛.,𝑒-−𝑗2𝜋𝑛,𝑇-0.𝑓..
	,𝐶-𝑛.=,1-,𝑓-0..,−,,𝑓-0.-2.-,,𝑓-0.-2.-,𝑋-∗.,𝑓.,𝑒-𝑗2𝜋𝑛,𝑇-0.𝑓.𝑑𝑓.
	,𝑋-∗.,𝑓.=,𝑛=−∞-+∞-,1-,𝑓-0..,−,,𝑓-0.-2.-,,𝑓-0.-2.-,𝑋-∗.,𝑓.,𝑒-𝑗2𝜋𝑛,𝑓𝑇-0..𝑑𝑓,𝑒-−𝑗2𝜋𝑛,𝑓𝑇-0....
	We also have:
	,𝑋-∗.,𝑓.=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑓𝑛,𝑇-0.. (1)
	By identification, we obtain:
	𝑥(𝑛,𝑇-0.)=,1-,𝑓-0..,−,,𝑓-0.-2.-,,𝑓-0.-2.-𝑋,𝑓.,𝑒-𝑗2𝜋𝑛,𝑓𝑇-0..𝑑𝑓.
	,𝑋-∗.,𝑓.=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑓𝑛,𝑇-0.. (2)
	,𝑋-∗.,𝑘∆𝑓.=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑘∆𝑓𝑛,𝑇-0..
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑘,,𝑓-0.-𝑁.𝑛,𝑇-0..
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋,𝑛𝑘-𝑁..
	𝑋(𝑘)=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋,𝑛𝑘-𝑁..
	𝑥(𝑛,𝑇-0.)=,1-,𝑓-0..,−,,𝑓-0.-2.-,,𝑓-0.-2.-𝑋,𝑓.,𝑒-𝑗2𝜋𝑛,𝑓𝑇-0..𝑑𝑓. (1)
	𝑥(𝑛)=,1-,𝑓-0..,−,,𝑓-0.-2.-,,𝑓-0.-2.-𝑋,𝑘∆𝑓.,𝑒-𝑗2𝜋𝑛,𝑘∆𝑓-0..𝑑𝑓.
	𝑥(𝑛)=,1-𝑁.,𝑛=−,𝑁-2.-,𝑁-2.-𝑋(𝑘).,𝑒-𝑗2𝜋,1-𝑁.𝑛𝑘.
	𝑥(𝑛)=,1-𝑁.,𝑛=−,𝑁-2.-,𝑁-2.-𝑋(𝑘).,𝑒-𝑗2𝜋,𝑛𝑘-𝑁..
	In relation to the equations derived in the "DFT" section, it is helpful to introduce the following substitution:
	,𝑊-𝑁-𝑛𝑘.=,𝑒-−𝑗 ,2𝜋𝑛𝑘-𝑁..
	The  ,𝑊-𝑁-𝑛𝑘. element in this substitution is also called the "twiddle factor." With respect to this substitution, we may rewrite the equation for computing the DFT and IDFT into these formats:
	𝐷𝐹𝑇,𝑥,𝑛..=𝑋,𝑘.=,𝑛=0-𝑁−1-𝑥,𝑛...,𝑊-𝑁-𝑛𝑘.
	𝐼𝐷𝐹𝑇,𝑋,𝑘..=𝑥,𝑛.=,1-𝑁..,𝑘=0-𝑁−1-𝑋,𝑘...,𝑊-𝑁-−𝑛𝑘.
	3.1.1 Propriétés de la TFD
	To enhance the efficiency of computing the DFT, certain properties of ,𝑊-𝑁-𝑛𝑘. are exploited. These properties stem from the graphical representation of the twiddle factor as a rotational vector for each nk value. They are described as follows:
	3.1.1.1 Periodicity

	The sequence 𝑋,𝑘. is a periodic sequence with a period of N.
	,1-𝑁..,𝑛=0-𝑁−1-𝑥(𝑛).,𝑒-−𝑗.,2.𝜋-𝑁..𝑘.𝑛..,𝑒-−𝑗.,2.𝜋-𝑁..𝑁.𝑛.=,1-𝑁..,𝑛=0-𝑁−1-𝑥(𝑛).,𝑒-−𝑗.,2.𝜋-𝑁..𝑘.𝑛.=𝑋,𝑘...
	3.1.1.2   Symetry

	where ,𝑋-∗.(𝑘) denotes the complex conjugate of 𝑋,𝑘..
	Example
	Consider the sequence:
	𝑥(𝑛)= [3, −1, 2, −2]
	We will calculate the DFT using the matrix form for N=4.
	DFT Matrix Form:
	The DFT matrix ,𝑊-𝑁. of size N×N is given by:
	,𝑊-𝑁-𝑛𝑘.=,𝑒-−𝑗,2𝜋-𝑁.𝑘𝑛.
	For N=4, the matrix ,𝑊-4. is: ,𝑒-−𝑗𝜋.
	,𝑊-4.=,,1         1         1         1-1 ,  𝑒-−𝑗,𝜋-2..   ,𝑒-−𝑗𝜋. ,𝑒-−𝑗,3𝜋-2..-1  ,𝑒-−𝑗𝜋.  ,𝑒-−2𝑗𝜋.  ,𝑒-−3𝑗𝜋.-1  ,𝑒-−𝑗,3𝜋-2..  ,𝑒-−3𝑗𝜋. ,𝑒-−𝑗,9𝜋-2....
	Substituting values:
	, 𝑒-−𝑗,𝜋-2..=−𝑗
	,𝑒-−𝑗𝜋.=−1
	, 𝑒-−𝑗,3𝜋-2..=𝑗
	,𝑒-−𝑗2𝜋.=1
	The DFT matrix becomes:
	,𝑊-4.=,,1   1    1   1-1−𝑗 −1    𝑗-1 −1    1   1-1   𝑗 −1−𝑗..
	Step 1: Input Sequence 𝑥(𝑛):
	The input sequence is:
	𝑥=,,3-−1-2-−2..
	Step 2: Perform Matrix Multiplication
	Now multiply the DFT matrix  ,𝑊-4. by the input sequence 𝑥:
	𝑋=,𝑊-4.𝑥=,,1   1    1   1-1−𝑗 −1    𝑗-1 −1    1   1-1   𝑗 −1−𝑗..×,,3-−1-2-−2..
	Perform the multiplication row by row:
	𝑋(0)=1×3+1×(−1)+1×2+1×(−2)=3−1+2−2=2
	𝑋(1)=1×3+(−j)×(−1)+(−1)×2+j×(−2) =3+j−2−2j=1−j
	𝑋(2)=1×3+(−1)×(−1)+1×2+(−1)×(−2)=3+1+2+2=8
	𝑋(3)=1×3+j× (−1) +(−1) ×2+(−j)×(−2)=3−j−2+2j= 1 + j
	The DFT of the sequence 𝑥(𝑛)= [3, −1, 2, −2] is: 𝑋(𝑘)= [2, 1−j, 8, 1+j]
	In this example, we computed the DFT of the sequence 𝑥(𝑛)= [3, −1, 2, −2] using matrix multiplication. The result 𝑋(𝑘)=[2,1−j,8,1+j] provides the frequency domain representation of the input sequence, showing how both positive and negative values ...
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	3.1.2.1 Radix-2 decimation in time FFT description
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