

2024-2025

 الجمهورية الجزائرية الديمقراطية الشعبية

 ميالعل والبحثوزارة التعليم العالي

 Ziane Achour University of Djelfa

Advanced Physiological Signal

Processing Course

Dr. Mohamed DJEMAI

Faculty of science and technology

Academic year 2023-2024

Table of Contents

Introduction……………………………………………………………………………………………….…7

1Chapter 1: Aalysis and Synthesis of FIR and IIR Digital Filters

1.1 Signal ..9

1.1.1 Dimensional classification ...9

1.1.2 Analog signal (continuous) .. 10

1.1.3 Digital signal ... 10

1.1.4 Digitization of an analog signal .. 10

1.1.5 Analog-to-Digital Conversion .. 10

1.1.5.1 Sampling ... 10

1.1.5.2 Quantization and Encoding .. 11

1.1.6 Discrete-Time Basic Signals .. 11

1.1.6.1 Unit Impulse or Kronecker Delta.. 11

1.1.6.2 Unit Step.. 12

1.1.6.3 Causal Exponential Signal.. 12

1.1.6.4 Causal Rectangular Signal of Duration N or Pulse .. 12

1.1.7 Properties of Discrete-Time Signals ... 12

1.1.7.1 Causality .. 12

1.1.7.2 Energy ... 12

1.1.7.3 Average Power ... 12

1.1.7.4 Instantaneous Power .. 13

1.1.7.5 Periodicity ... 13

1.1.7.6 Symmetry .. 13

1.1.7.7 Autocorrelation .. 13

1.1.7.8 Cross-correlation.. 13

1.1.7.9 Convolution ... 13

1.2 Z-Transform .. 13

1.2.1 Examples of Z-Transform .. 14

1.2.2 Properties of the Z-Transform .. 15

1.2.2.1 Linearity .. 15

1.2.2.2 Time shifting ... 15

1.2.2.3 Scaling in Z- Domain ... 16

1.2.2.4 Time reversal ... 16

1.2.2.5 Differentiation in Z- Domain .. 16

1.2.2.6 Convolution property ... 17

1.2.3 Inverse Z-Transform .. 18

1.3 Digital Filtering ... 19

1.3.1 Transmittance in Z of a Digital Filter: .. 19

1.3.2 Algorithm for calculating yn ... 20

1.3.3 Transition from the Algorithm to T(z) .. 21

1.3.4 Transition from T(z) to the algorithm ... 22

1.3.5 Stability of a digital filter ... 22

1.3.6 Representation of a Digital Filter ... 23

1.3.6.1 Z-Transfer Function ... 23

1.3.6.2 Impulse Response .. 23

1.3.6.3 Difference Equation ... 24

1.3.7 Specifications of a Digital Filter ... 24

1.3.7.1 Low-pass filters ... 24

1.3.7.2 High-pass filters ... 24

1.3.7.3 Band-pass filters .. 24

1.3.7.4 Band-stop filters .. 24

1.4 Classification of Digital Filters .. 25

1.4.1 Finite Impulse Response (FIR) Digital Filters .. 25

1.4.1.1 Characteristics of FIR Filters .. 26

1.4.1.2 Structure of FIR Filters .. 26

1.4.2 Advantages of FIR Filters .. 27

1.4.3 Disadvantages of FIR Filters .. 28

1.4.4 FIR Filter Design ... 29

1.4.4.1 FIR Filter Design by Windowing.. 29

1.4.4.2 Frequency Sampling Method ... 33

1.5 Infinite Impulse Response (IIR) Digital Filters ... 36

1.5.1 IIR Filter Topologies .. 36

1.5.2 IIR Filter Design .. 38

1.5.2.1 Advantages of IIR digital filters ... 40

1.5.2.2 Disadvantages of IIR digital filters ... 40

2Chapter 2: Averaging Filter and Median Filter

2.1 Averaging Filter .. 43

2.1.1 Example Application for a Physiological Signal ... 44

2.1.2 Local Averaging Filter Application in Medical Imaging.. 45

2.2 Median filter.. 47

3Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

3.1 Discrete Fourier Transform (DFT) ... 50

3.1.1 Propriétés de la TFD .. 55

3.1.1.1 Periodicity ... 55

3.1.1.2 Symetry ... 55

3.1.2 Fast Fourier Transform (FFT) .. 57

3.1.2.1 Radix-2 decimation in time FFT description ... 57

3.1.2.2 Radix-2 decimation in time FFT requirements .. 60

3.1.2.3 Fast Fourier Transform (FFT) in ECG Signal Analysis: .. 60

3.1.2.4 Application of FFT in ECG Signal Analysis using MATLAB ... 60

3.2 Discrete Cosine Transform (DCT) ... 63

3.2.1 Mathematical Formulation ... 63

3.2.2 1D DCT Formula: .. 63

4Chapter 4: Concepts of Characteristics and Classification of Physiological Signals

4.1 Characteristics of Physiological Signals ... 65

4.1.1 Types of Physiological Signals ... 65

4.1.1.1 Electrocardiogram (ECG) .. 65

4.1.1.2 Electroencephalogram (EEG) ... 65

4.1.1.3 Electromyogram (EMG) .. 65

4.2 Characteristics of Physiological Signals ... 65

4.2.1 Non-stationary nature .. 65

4.2.2 Periodicity ... 65

4.2.3 Amplitude and frequency ranges .. 65

4.2.4 Noise and artifacts ... 66

4.3 Feature Extraction Methods ... 66

4.3.1 Time-Domain Feature Extraction ... 66

4.3.2 Mean and variance ... 66

4.3.3 Root Mean Square (RMS) .. 66

4.3.4 Zero-crossing rate .. 66

4.4 Frequency-Domain Feature Extraction... 66

4.4.1 Discrete Fourier Transform (DFT) and Short-Time Fourier Transform (STFT) 66

4.4.2 Power Spectral Density (PSD) ... 67

4.4.3 Bandpower .. 67

4.5 Wavelet Transform .. 67

4.5.1 Wavelet coefficients ... 67

4.6 Non-linear Feature Extraction .. 67

4.6.1 Detrended Fluctuation Analysis (DFA) ... 67

4.7 Classification Approaches.. 67

4.7.1 Types of Classifiers .. 67

4.7.1.1 Support Vector Machine (SVM) ... 67

4.7.1.2 Artificial Neural Networks (ANN) ... 68

4.7.1.3 K-Nearest Neighbors (KNN) .. 68

4.7.1.4 Random Forest ... 68

4.7.2 Training and Testing .. 68

4.7.2.1 Training ... 68

4.7.2.2 Testing ... 68

4.8 Performance Evaluation... 68

4.8.1 Accuracy, Sensitivity, and Specificity... 68

4.8.1.1 Accuracy ... 68

4.8.1.2 Sensitivity (Recall) .. 69

4.8.1.3 Specificity ... 69

4.8.2 Cross-Validation .. 69

4.8.2.1 k-Fold Cross-Validation ... 69

4.8.2.2 Leave-One-Out Cross-Validation (LOOCV) ... 69

4.8.2.3 Stratified Cross-Validation ... 69

4.8.3 ROC Curves and AUC ... 70

4.8.3.1 ROC Curve (Receiver Operating Characteristic) .. 70

4.8.3.2 AUC (Area Under the Curve) ... 70

4.9 Application for a Physiological Signal: ECG Analysis ... 70

4.9.1 Feature Extraction in ECG ... 70

4.9.1.1 R-peak detection .. 70

4.9.1.2 Heart Rate Variability (HRV) ... 70

4.9.1.3 Waveform morphology .. 70

4.9.2 Classifier Design for Arrhythmia Detection .. 70

4.9.2.1 Real-Time Application ... 70

4.10 Application of SVM for Auditory Evoked Potentials (AEP) Classification Using MATLAB 71

4.11 Application of VGG19 and SVM for MRI Brain Tumor Classification Using MATLAB 72

5Chapter 5: Response of Random Signals to Linear Systems

5.1 Random signals ... 76

5.2 A Linear Time-Invariant (LTI) system.. 76

5.3 Memoryless Systems ... 77

5.4 Systems with Memory ... 78

5.5 Characteristics of Memoryless Systems ... 78

5.5.1 Instantaneous Response ... 78

5.5.2 Causality ... 78

5.5.3 Linearity .. 78

5.6 Response of Memoryless Systems to Random Signals ... 78

5.7 Power Spectral Density (PSD) ... 78

5.7.1 Densities of Energy Spectral Density and Power Spectral Density .. 78

5.7.2 Properties of Power Spectral Density ... 79

5.7.3 Non-negativity ... 79

5.7.4 Symmetry .. 79

5.7.4.1 Wiener-Khinchin Theorem ... 79

5.8 Methods to Estimate Power Spectral Density ... 79

5.8.1 Non-parametric Methods ... 80

5.8.1.1 Periodogram .. 80

5.8.1.2 Welch’s Method ... 80

5.8.1.3 Blackman-Tukey Method ... 80

5.8.1.4 Multitaper Method ... 81

5.8.2 Parametric Methods ... 81

5.8.2.1 Autoregressive (AR) Model-Based Methods .. 82

5.8.2.2 Moving Average (MA) Model .. 82

5.8.2.3 Autoregressive Moving Average (ARMA) Model ... 82

5.8.2.4 Prony’s Method ... 83

5.9 Applications of Power Spectral Density ... 83

5.10 Response of LTI Systems to Random Signals... 84

5.11 Applications of Random Signal Response in LTI Systems.. 87

References ……………………...…………………………………………………………..………..89

7

Introduction

This course material, designed for first-year Master's students in Biomedical Engineering, focuses

on "Advanced Processing of Physiological Signals." It provides the theoretical and practical knowledge

necessary to analyze and process various physiological signals, such as electrocardiograms (ECG),

electroencephalograms (EEG), and medical images like MRIs and X-rays. These signals are often

affected by noise and artifacts, making their interpretation challenging. The course addresses advanced

signal processing techniques, including digital filters (FIR and IIR) and the Discrete Fourier Transform

(DFT), crucial for enhancing signal quality by reducing noise and extracting relevant diagnostic

information.

In addition to these techniques, the course covers the essential characteristics and classification of

physiological signals, such as their origin (cardiac, neural) and type (continuous, discrete), which are

essential for accurate interpretation and application in medical diagnosis. It also delves into how random

or stochastic signals behave in linear systems, focusing on how system properties like stability and

impulse response affect signal filtering and system performance. These insights are vital for improving

signal processing, noise reduction, and system optimization in biomedical applications.

Through this material, students will develop a deep understanding of filtering concepts, the

application of the DFT in signal analysis, and how to design digital filters tailored to biomedical needs.

They will also gain practical skills in using software tools for the effective processing of physiological

signals.

1 Chapter 1: Analysis and Synthesis of FIR

and IIR Digital Filters

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

9

1.1 Signal

A signal is the physical representation of information to be transmitted, serving as the entity that

carries this information.

Examples of signals include acoustic waves, such as the current produced by a microphone

(speech, music, etc.), biological signals like EEG or ECG, the voltage across a charging capacitor,

geophysical signals such as seismic vibrations, financial data like stock market prices, the flow rate of

the Seine River, as well as images and videos.

Figure 1.1: Random signal in time space

1.1.1 Dimensional classification

1D (single-dimensional) signal: A function that depends on a single independent variable or

parameter, which could be time, space (e.g., an x-coordinate), concentration, or other quantities. It

typically represents how a quantity varies along a single axis or parameter.

Examples

 Sound wave: The amplitude (volume) of a sound wave varies over time.

 Stock prices: Stock prices fluctuate over time.

 Electrocardiogram (ECG): An ECG measures the electrical activity of the heart over time.

A 2D (two-dimensional) signal varies across two dimensions. Most commonly these dimensions

are spatial (like the x and y positions within an image).

Examples

 Image: The brightness or color intensity of each pixel in an image varies based on its position

along the x and y coordinates.

 Geographic map: The elevation on a topographical map varies based on longitude and latitude

coordinates.

 Medical imaging (X-ray or MRI scan): Intensity values in a medical scan represent different tissue

types and vary across both x and y dimensions.

3D (Three-dimensional) signal: refers to a signal that varies across three dimensions, capturing

data along three independent parameters. These parameters are typically spatial, but they could also

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

10

include time or other variables. In a 3D signal, information is organized in a three-dimensional space,

allowing the representation of more complex data structures compared to 1D or 2D signals.

Examples

 Medical Imaging: Signals from MRI or CT scans, where the data represents a 3D model of the

human body or an organ.

 3D Video: A video that captures three-dimensional visual information, often used in virtual reality

or stereoscopic displays.

 Geospatial Data: Topographical maps or seismic data that represent the earth's surface or

subsurface in three dimensions.

1.1.2 Analog signal (continuous)

 A signal that can take an infinite number of values and varies continuously over time.

1.1.3 Digital signal

A digital signal is a signal that varies discretely over time. It is said to be quantized. It consists of

a sequence of 0s and 1s, called bits. It is referred to as binary.

Figure 1.2: Analog signal and digital signal

1.1.4 Digitization of an analog signal

The importance of digital information processing systems is continuously increasing (radio,

television, telephone, instrumentation, etc.). This choice is often justified by technical advantages such

as high parameter stability, excellent result reproducibility, and enhanced functionalities. Since the

external world is inherently "analog," a preliminary analog-to-digital conversion operation is necessary.

Digitization: The process of transforming (or encoding) information into a sequence of bits.

1.1.5 Analog-to-Digital Conversion

The steps of analog-to-digital conversion can be grouped into two main steps: first, sampling the

analog signal, and second, quantizing and encoding the sampled values into digital form.

1.1.5.1 Sampling

This step involves slicing the analog signal into small time intervals according to a well-defined

period set by a clock. The amplitude (A) of the signal at the clock's pulse is used as the reference for

this interval. This value is then encoded. If the signal is sampled at a frequency of 100 Hertz (for

example), each time interval, called a period, is equal to
1

 100
= 0.01 seconds, or 10 milliseconds. The

sampling frequency (
1

 𝑇0
) must be sufficiently high to fully capture the signal.

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

11

Figure 1.3: Sampled Signal at 𝑇0

1.1.5.2 Quantization and Encoding

After sampling, the values are quantized by mapping them to discrete levels, each representing a

range of signal amplitudes. These quantized values are then encoded into a digital format. Encoding

involves representing the amplitude of the quantized signal in terms of binary digits, with each binary

digit corresponding to a specific weight (e.g., 4, 2, 1 in a 3-bit system). For example, a signal with an

amplitude of 7 volts (in decimal) would be converted into a 3-bit binary word (7 in decimal = 0111 in

binary).

Figure 1.4: Signal encoded on 3 bits

Some basic signals that are useful for studying the properties of signal processing systems are described

below.

1.1.6 Discrete-Time Basic Signals

1.1.6.1 Unit Impulse or Kronecker Delta

This is a signal denoted as δ(k) such that:

𝛿(𝑛) = {
1 𝑖𝑓 𝑛 = 0
0 𝑖𝑓 𝑛 ≠ 0

The shifted impulse, denoted as 𝛿(𝑘 − 𝑘), is defined as follows:

𝛿(𝑛 − 𝑘) = {
1 𝑖𝑓 𝑛 = 𝑘
0 𝑖𝑓 𝑛 ≠ 𝑘

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

12

1.1.6.2 Unit Step

This is a signal denoted as 𝒖(𝒏) such that:

𝑢(𝑛) = {
1 𝑖𝑓 𝑛 ≥ 0
0 𝑖𝑓 𝑛 < 0

It can be written as:

𝑢(𝑛) = ∑𝛿(𝑛 − 𝑘)

+∞

𝑘=0

1.1.6.3 Causal Exponential Signal

This is the signal such that:

𝑥(𝑛) = 𝑒−𝑎𝑛𝑢(𝑛)

Depending on whether 𝑎 > 0 or 𝑎 < 0, the exponential signal will converge to 0 or diverge to +∞.

1.1.6.4 Causal Rectangular Signal of Duration N or Pulse

This is the signal such that:

𝑟𝑒𝑐𝑡𝑁(𝑛) = {
1 𝑖𝑓 0 ≤ 𝑛 ≤ 𝑁 − 1
0 𝑖𝑓 otherwise

1.1.7 Properties of Discrete-Time Signals

1.1.7.1 Causality

A signal is said to be causal when:

𝑥(𝑛) = 0 ∀ 𝑛 < 0

1.1.7.2 Energy

The energy of a discrete-time signal 𝒙(𝒏) is defined as follows:

𝐸𝑥 = ∑ |𝑥(𝑛)|2
+∞

𝑘=−∞

1.1.7.3 Average Power

The average power of a signal 𝒙(𝒏) is defined as:

𝑃𝑥 = lim
𝑁→∞

1

𝑁
∑ |𝑥(𝑛)|2

+
𝑁
2

𝑘=−
𝑁
2

If the energy 𝐸𝑥 is finite, then 𝑥(𝑛) is a finite-energy signal and 𝑃𝑥 = 0. If E is infinite, then 𝑃𝑥

can be either finite or infinite. If 𝑃𝑥 is finite and non-zero, then 𝑥(𝑛) is a finite-power signal.

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

13

1.1.7.4 Instantaneous Power

Instantaneous power is defined by:

𝑷(𝒏) = |𝒙(𝒏)|𝟐

1.1.7.5 Periodicity

A signal 𝒙(𝒏) is periodic with period N if and only if 𝒙(𝒏 +𝑵) = 𝒙(𝒏). Otherwise, 𝒙(𝒏) is aperiodic.

1.1.7.6 Symmetry

A signal 𝒙(𝒏). is symmetric or even if and only if 𝒙(−𝒏) = 𝒙(𝒏). A signal 𝒙(𝒏) is antisymmetric or odd

if and only if 𝒙(−𝒏) = −𝒙(𝒏). Every signal can be decomposed into the sum of an even signal and an

odd signal.

1.1.7.7 Autocorrelation

The autocorrelation of a signal 𝒙(𝒏) is defined by:

𝑅𝑥𝑥(𝑘) = ∑ 𝑥(𝑛)𝑥(𝑛 + 𝑘) = 𝑅𝑥𝑥(−𝑘)

+∞

𝑘=−∞

We have: |𝑅𝑥𝑥(𝑘)| ≤ : |𝑅𝑥𝑥(0)| = 𝐸

1.1.7.8 Cross-correlation

The cross-correlation of two signals 𝒙(𝒏) and 𝒚(𝒏) is defined by:

𝑅𝑥𝑦(𝑘) = ∑ 𝑥(𝑛)𝑦(𝑛 + 𝑘) = 𝑅𝑥𝑦(−𝑘)

+∞

𝑘=−∞

1.1.7.9 Convolution

The linear convolution between two signals 𝒙(𝒏) and 𝒚(𝒏) is defined by:

𝑥(𝑘) ∗ 𝑦(𝑘) = ∑ 𝑥(𝑛)𝑦(𝑘 − 𝑛)

+∞

𝑛=−∞

It is noted that:

𝑅𝑥𝑦(𝑘) = 𝑥(𝑘) ∗ 𝑦(−𝑘)

1.2 Z-Transform

The Z-transform is a widely used tool for studying digital signal processing systems. It plays a

role analogous to that of the Laplace transform in continuous-time systems.

The bilateral Z-transform of a discrete-time signal 𝑥(𝑛) is defined by:

𝑍[𝑥(𝑛)] = 𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛
+∞

𝑛=−∞

Where z is a complex variable (𝑧𝜖₵) defined wherever this series converges. Since discrete signals

are most often causal, the Z-transform (referred to as unilateral) is more commonly defined as:

𝑍[𝑥(𝑛)] = 𝑋(𝑧) = ∑𝑥(𝑛)𝑧−𝑛
+∞

𝑛=0

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

14

1.2.1 Examples of Z-Transform

Example 1

 Let the following discrete-time signal be:

𝑥(𝑛) = 𝛿(𝑛)

We have:

𝑋(𝑧) = ∑𝑥(𝑛)𝑧−𝑛
+∞

𝑛=0

𝑋(𝑧) = 𝑧0 ∀ 𝑧𝜖₵

𝑋(𝑧) = 1 ∀ 𝑧𝜖₵

Example 2

Let the following discrete-time signal be:

𝑥(𝑛) = 𝛿(𝑛 − 𝑘)

We have:

𝑋(𝑧) = 𝑧−𝑘 ∀ 𝑧𝜖₵

Example 3

Let the discrete-time unit step signal 𝑢(𝑛) be the following, we have:

𝑈(𝑧) = ∑𝑢(𝑛)𝑧−𝑛
+∞

𝑛=0

= ∑𝑧−𝑛
+∞

𝑛=0

= ∑(𝑧−1)𝑛
+∞

𝑛=0

= 1 + 𝑧−1 + 𝑧−2 + 𝑧−3 + 𝑧−4 +⋯

It is a geometric series.

When n approaches ∞, the geometric series becomes:

𝑈(𝑧) =
1

1 − 𝑧−1
=

𝑧

𝑧 − 1
 𝑖𝑓 |𝑧−1| < 1

Example 4

Let the following discrete-time signal be:

𝑥(𝑛) = 𝑎𝑛𝑢(𝑛)

𝑋(𝑧) = ∑𝑥(𝑛)𝑧−𝑛 = ∑𝑎𝑛𝑧−𝑛 =

+∞

𝑛=0

+∞

𝑛=0

∑(𝑎𝑧−1)𝑛 =

+∞

𝑛=0

𝑋(𝑧) =
1

1 − 𝑎𝑧−1
=

𝑧

𝑧 − 𝑎

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

15

1.2.2 Properties of the Z-Transform

The Z-Transform of Discrete-Time sequence is given by:

𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛
+∞

𝑛=−∞

The Z-Transform pair can be written as:

𝑥(𝑛) ↔ 𝑋(𝑧)

The Z-Transform obeys the following properties:

1.2.2.1 Linearity

 If 𝑥1(𝑛) ↔ 𝑋1(𝑧) and 𝑥2(𝑛) ↔ 𝑋2(𝑧)

 Roc = R1 Roc = R2

Then, 𝑎𝑥1(𝑛) + 𝑏𝑥2(𝑛) ↔ 𝑎𝑋1(𝑧) + 𝑏𝑋2(𝑧) with Roc = 𝑅1 ∩ 𝑅2

Proof

𝑍𝑇[𝑎𝑥1(𝑛) + 𝑏𝑥2(𝑛)] = ∑ [𝑎𝑥1(𝑛) + 𝑏𝑥2(𝑛)]𝑧
−𝑛

+∞

𝑛=−∞

 = ∑ 𝑎𝑥1(𝑛)𝑧
−𝑛

+∞

𝑛=−∞

+ ∑ 𝑏𝑥2(𝑛)𝑧
−𝑛

+∞

𝑛=−∞

 = 𝑎 ∑ 𝑥1(𝑛)𝑧
−𝑛

+∞

𝑛=−∞

+ 𝑏 ∑ 𝑥2(𝑛)𝑧
−𝑛

+∞

𝑛=−∞

𝑍𝑇[𝑎𝑥1(𝑛) + 𝑏𝑥2(𝑛)] = 𝑎𝑋1(𝑧) + 𝑏𝑋2(𝑧)

1.2.2.2 Time shifting

If 𝑥(𝑛) ↔ 𝑋(𝑧); Roc = R1

Then 𝑥(𝑛 − 𝑘) ↔ 𝑧−𝑘 𝑋(𝑧); Roc = R1

Proof

𝑍𝑇[𝑥(𝑛 − 𝑘)] = ∑ 𝑥(𝑛 − 𝑘)𝑧−𝑛
+∞

𝑛=−∞

Let 𝑛 − 𝑘 = 𝑚 ⇒ 𝑛 = 𝑚 + 𝑘. Also, as 𝑛 → +∞ then 𝑚 → +∞,

𝑍𝑇[𝑥(𝑛 − 𝑘)] = ∑ 𝑥(𝑛 − 𝑘)𝑧−𝑛
+∞

𝑛=−∞

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

16

𝑍𝑇[𝑥(𝑛 − 𝑘)] = ∑ 𝑥(𝑚)𝑧−(𝑚+𝑘)
+∞

𝑚=−∞

𝑍𝑇[𝑥(𝑛 − 𝑘)] = ∑ 𝑥(𝑚)𝑧−𝑚𝑧−𝑘
+∞

𝑚=−∞

= 𝑧−𝑘𝑋(𝑧)

1.2.2.3 Scaling in Z- Domain

If 𝑥(𝑛) ↔ 𝑋(𝑧); Roc = 𝑅

Then 𝑎𝑛𝑥(𝑛) ↔ 𝑋 (
𝑧

𝑎
); Roc = |𝑎|𝑅

Proof

𝑍𝑇[𝑎𝑛𝑥(𝑛)] = ∑ 𝑎𝑛𝑥(𝑛)𝑧−𝑛 = ∑ 𝑥(𝑛)(
𝑧

𝑎
)−𝑛 = 𝑋(

𝑧

𝑎
)

+∞

𝑛=−∞

+∞

𝑚=−∞

If ROC is 𝛼 < |𝑧| < 𝛽, then the new ROC will be |𝑎|𝛼 < |𝑧| < |𝑎|𝛽

1.2.2.4 Time reversal

If 𝑥(𝑛) ↔ 𝑋(𝑧); Roc = 𝑅

Then 𝑥(−𝑛) ↔ 𝑋 (
1

𝑧
); Roc =

1

𝑅

Proof

𝑍𝑇[𝑥(−𝑛)] = ∑ 𝑥(−𝑛)𝑧−𝑛+∞
𝑛=−∞ ; let −𝑛 = 𝑚 ⇒ 𝐴𝑠 𝑛 → +∞, then 𝑚 → −∞,

𝑍𝑇[𝑥(−𝑛)] = ∑ 𝑥(𝑚)𝑧𝑚
+∞

𝑚=−∞

𝑍𝑇[𝑥(−𝑛)] = ∑ 𝑥(𝑚)(𝑧−1)−𝑚
+∞

𝑚=−∞

= 𝑋(𝑧−1) = 𝑋 (
1

𝑧
)

If ROC is 𝑎 < |𝑧| < 𝑏, then the new ROC will be 𝑎 < |
1

𝑧
| < 𝑏 ⇒

1

𝑏
< |𝑧| <

1

𝑎

1.2.2.5 Differentiation in Z- Domain

If 𝑥(𝑛) ↔ 𝑋(𝑧); Roc = 𝑅

Then 𝑛𝑥(𝑛) ↔ −𝑧
𝑑

𝑑𝑧
𝑋(𝑧); Roc = 𝑅

Proof 𝑋(𝑧) = ∑ 𝑥(𝑛)𝑧−𝑛+∞
𝑛=−∞

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

17

𝑑

𝑑𝑧
[𝑋(𝑧)] = ∑ 𝑥(𝑛)

𝑑

𝑑𝑧
(𝑧−𝑛)

+∞

𝑛=−∞

𝑑

𝑑𝑧
[𝑋(𝑧)] = ∑ 𝑥(𝑛)(−𝑛. 𝑧−𝑛−1)

+∞

𝑛=−∞

= −
1

𝑧
∑ 𝑛. 𝑥(𝑛)𝑧−𝑛
+∞

𝑛=−∞

−𝑧
𝑑

𝑑𝑧
[𝑋(𝑧)] = ∑ [𝑛. 𝑥(𝑛)]𝑧−𝑛

+∞

𝑛=−∞

−𝑧
𝑑

𝑑𝑧
[𝑋(𝑧)] = 𝑍𝑇[𝑛. 𝑥(𝑛)]

1.2.2.6 Convolution property

 If 𝑥1(𝑛) ↔ 𝑋1(𝑧); Roc = R1

 𝑥2(𝑛) ↔ 𝑋2(𝑧); Roc = R2

 Then 𝑥1(𝑛) ∗ 𝑥2(𝑛) ↔ 𝑋1(𝑧) × 𝑋2(𝑧); Roc = 𝑅1 ∩ 𝑅2

 (Convolution in time domain↔ multiplication in Z- Domain)

Proof

Convolution of two signals 𝑥1(𝑛) and 𝑥2(𝑛) is given by:

𝑥1(𝑛) ∗ 𝑥2(𝑛) = ∑ 𝑥1(𝑘)𝑥2(𝑛 − 𝑘)

+∞

𝑛=−∞

The Z-transform of convolution is given by:

𝑍𝑇[𝑥1(𝑛) ∗ 𝑥2(𝑛)] = ∑ [∑ 𝑥1(𝑘)𝑥2(𝑛 − 𝑘)

+∞

𝑘=−∞

] 𝑧−𝑛
+∞

𝑛=−∞

Interchanging the order of summation

𝑍𝑇[𝑥1(𝑛) ∗ 𝑥2(𝑛)] = ∑ 𝑥1(𝑘) [∑ 𝑥2(𝑛 − 𝑘)𝑧
−𝑛

+∞

𝑛=−∞

]

+∞

𝑘=−∞

If 𝑥2(𝑛) ↔ 𝑋2(𝑧);

Then 𝑥2(𝑛 − 𝑘) ↔ 𝑧−𝑘 𝑋2(𝑧);

𝑍𝑇[𝑥1(𝑛) ∗ 𝑥2(𝑛)] = ∑ 𝑥1(𝑘) 𝑋2(𝑧)𝑧
−𝑘

+∞

𝑘=−∞

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

18

 =𝑋2(𝑧)∑ 𝑥1(𝑘) 𝑧
−𝑘+∞

𝑘=−∞

 = 𝑋1(𝑧). 𝑋2(𝑧)

1.2.3 Inverse Z-Transform

The general idea of the inverse Z-transform is to decompose a complex function 𝑋(𝑧) into simpler

components for which the inverse Z-transform is known. Using the linearity property of the Z-transform,

the original time-domain signal can be reconstructed by summing the individual time-domain signals

that correspond to each of the elementary components in the decomposition. Assuming: 𝛼 < |𝑧| < 𝛽

𝑋(𝑧) = 𝛼1𝑋1(𝑧) + 𝛼2𝑋2(𝑧) +⋯+ 𝛼𝐿𝑋𝐿(𝑧)

We obtain:

𝑥(𝑛) = 𝛼1𝑥1(𝑛) + 𝛼2𝑥2(𝑛) +⋯+ 𝛼𝐿𝑥𝐿(𝑛)

The class of rational Z-transforms can always be expressed according to this principle. We will then

write:

𝑋(𝑧) = 𝛼1
𝑧

𝑧 − 𝑝1
+ 𝛼2

𝑧

𝑧 − 𝑝2
+⋯

We will then have, by applying the inverse Z-transform:

𝑥(𝑛) = 𝛼1𝑝1
𝑛 + 𝛼2𝑝2

𝑛 +⋯

The table below summarizes the Z-transforms and inverse Z-transforms of the most commonly used

functions in signal processing.

Table 1.1: Z-Transforms and Inverse Z-Transforms of Common Functions

𝑥(𝑛) 𝑋(𝑧)

𝛿(𝑛) 1

𝛿(𝑛 − 𝑘) 𝑧−𝑘

𝑢(𝑛)
𝑧

𝑧 − 1

𝑛
𝑧

(𝑧 − 1)2

𝑎𝑛
𝑧

𝑧 − 𝑎

𝑒−𝑎𝑛
𝑧

𝑧 − 𝑒−𝑎

𝑠𝑖𝑛(𝜔0𝑛)

𝑧. 𝑠𝑖𝑛(𝜔0)

𝑧2 − 2𝑧𝑐𝑜𝑠(𝜔0) + 1

𝑐𝑜𝑠(𝜔0𝑛)
𝑧. (𝑧 − 𝑐𝑜𝑠(𝜔0))

𝑧2 − 2𝑧𝑐𝑜𝑠(𝜔0) + 1

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

19

1.3 Digital Filtering

A digital filter is a system that processes discrete-time signals by applying mathematical

operations to modify or enhance certain aspects of the signal. It operates on sequences of data (e.g.,

audio or sensor data) and is characterized by its transmittance function or transfer function in the Z-

domain, which describes the relationship between the input and output signals.

 Examples of filtering are given below:

Noise reduction for radio signals, sensor-derived images, or biomedical signals (ECG, EEG,

EMG, etc.).

 Modification of certain frequency regions in an audio signal or image.

 Restriction to a predefined frequency band.

1.3.1 Transmittance in Z of a Digital Filter:

Let a system, which takes an input sequence 𝑥(𝑛) and produces an output sequence 𝑦(𝑛), be

represented as:

Figure 1.5: Representation of an Input-Output Relationship in a Discrete-Time System

Let X(z) and Y(z) be the Z-transforms of the input and output sequences. The transmittance

T(z) of the filter is then defined by:

T(z) =
Y(z)

X(z)

Since the Z-transforms X(z) and Y(z) are polynomials containing negative powers of z, the

transmittance will be a ratio of two polynomials in negative powers of z.

For example, let's find the transmittance of a digital high-pass filter that responds to a step input in the

same way as an analog filter with a time constant τ=10 ms, and therefore a cutoff frequency of 𝑓𝑐 =
1

2𝜋
= 15.9 Hz:

Figure 1.6: Step Response of an Analog High-Pass Filter

𝑥(0), 𝑥(1), 𝑥(2)….

 Digital filter

 𝑦(0), 𝑦(1), 𝑦(2)….

x(t) = 1
y(t) = 1.e-100t

1

t t

Analog High-Pass Filter

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

20

The equivalent digital filter would exhibit the following behavior:

Figure 1.7: Step Response of a Digital High-Pass Filter

If the signal is sampled at F0 = 1 KHz, which corresponds to T0 = 1 ms, then: X(z) =
𝑧

𝑧−1
 and

Y(z) =
𝑧

𝑧−𝑘
 with k = e−100T0 = 0.905

We can deduce the transmittance of the filter as:

T(z) =
Y(z)

X(z)
=

𝑧 − 1

𝑧 − 0.905

This simple example illustrates how easy it is to find the transmittance of a digital filter that

produces a particular output in response to a given input. This technique, used to synthesize

sophisticated digital filters, is called the impulse or step response identification method.

1.3.2 Algorithm for calculating 𝐲(𝐧)

The system thus uses the previous p output samples and the previous q input samples, plus the

current input x(n), to calculate the output at time t = nT0.

The algorithm allows us to calculate the value of the output sample yny_nyn based on the previous

input and output samples. The most general digital filter can be described by a calculation algorithm of

the following form:

𝑦(𝑛) = 𝑎1𝑦(𝑛 − 1) + 𝑎2𝑦(𝑛 − 2) +⋯+ 𝑎𝑝𝑦(𝑛 − 𝑝) + 𝑏0𝑥(𝑛) + 𝑏1𝑥(𝑛 − 1) +⋯+ 𝑏𝑞𝑥(𝑛 − 𝑞)

Depending on the form of the algorithm, there are two main types of filters, each with its specific

properties:

A. Filters where the output depends only on the input and not on previous outputs:

 Their response to an impulse eventually settles to zero after a certain time.

 These are called non-recursive filters or Finite Impulse Response (FIR) filters.

 They have no direct analog equivalent.

Example

 Moving average filter y(n) =
𝑥(𝑛)+𝑥(𝑛−1)+𝑥(𝑛−2)

3
.

B. Filters where the output depends on both the current and previous inputs and outputs:

 Their response to an impulse decay to zero only after an infinite amount of time.

x(t) = 1 y(nTe) = 1.e-100nT0

1

t t

Digital High-Pass Filter

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

21

 These are called recursive filters or Infinite Impulse Response (IIR) filters.

Example

 First-order low-pass filter 𝑦(𝑛) = 0.5. 𝑦(𝑛 − 1) + 0.25. [𝑥(𝑛) + 𝑥(𝑛 − 1)].

1.3.3 Transition from the Algorithm to T(z)

The algorithm

𝑦(𝑛) = 𝑎1𝑦(𝑛 − 1) + 𝑎2𝑦(𝑛 − 2) + 𝑎3𝑦(𝑛 − 3) + ⋯+ 𝑎𝑝𝑦(𝑛 − 𝑝) + 𝑏0𝑥(𝑛) + 𝑏1𝑥(𝑛 − 1)

+ 𝑏2𝑥(𝑛 − 2) + ⋯+ 𝑎𝑞𝑥(𝑛 − 𝑞)

By applying the Z-transform, we obtain:

𝑌(𝑧) = 𝑎1𝑌(𝑧)𝑧
−1 + 𝑎2𝑌(𝑧)𝑧

−2 + 𝑎3𝑌(𝑧)𝑧
−3 +⋯+ 𝑎𝑝𝑌(𝑧)𝑧

−𝑝 + 𝑏0𝑋(𝑧) + 𝑏1𝑋(𝑧)𝑧
−1

+ 𝑏2𝑋(𝑧)𝑧
−2 +⋯+ 𝑏𝑞𝑋(𝑧)𝑧

−𝑞

𝑌(𝑧)(1 − 𝑎1𝑧
−1 − 𝑎2𝑧

−2 −⋯− 𝑎𝑝𝑧
−𝑝) = 𝑋(𝑧)(𝑏0 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2 +⋯+ 𝑏𝑞𝑧

−𝑞)

Z-transmittance of the filter:

T(z) =
Y(z)

X(z)
=
b0 + b1z

−1 + b2z
−2 +⋯+ bqz

−q

1 − a1z−1 − a2z−2 −⋯− apz−p

=
∑ biz

−iq
i=0

1 − ∑ aiz−i
p
i=1

Example

Moving average filter over 4 values

The algorithm

𝑌(𝑛) =
𝑥(𝑛) + 𝑥(𝑛 − 1) + 𝑥(𝑛 − 2) + 𝑥(𝑛 − 3)

4

 = 0.25(𝑥(𝑛) + 𝑥(𝑛 − 1) + 𝑥(𝑛 − 2) + 𝑥(𝑛 − 3)).

By applying the Z-transform, we obtain:

𝑌(𝑧) = 0.25(X(z) + X(z)𝑧−1 + X(z)𝑧−2 + X(z)𝑧−3)

= 0.25(1 + 𝑧−1 + 𝑧−2 + 𝑧−3)X(z)

𝑇(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
= 0.25(1 + 𝑧−1 + 𝑧−2 + 𝑧−3)

Z-transmittance of the filter:

𝑇(𝑧) =
1 + 𝑧−1 + 𝑧−2 + 𝑧−3

4

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

22

1.3.4 Transition from T(z) to the algorithm

Example

We aim to find the calculation algorithm of the filter characterized by the following transmittance

T(z):

The transmittance is the ratio between the Z-transform of the output and the Z-transform of the input:

𝑇(𝑧) =
1 + 2𝑧−1 + 𝑧−3

2 + 𝑧−1
=
𝑌(𝑧)

𝑋(𝑧)

 𝑌(𝑧)(2 + 𝑧−1) = 𝑋(𝑧)(1 + 2𝑧−1 + 𝑧−3)

 2𝑌(𝑧) + 𝑌(𝑧)𝑧−1 = 𝑋(𝑧) + 2𝑋(𝑧)𝑧−1 + 𝑋(𝑧)𝑧−3

𝑌(𝑧) = −0.5𝑌(𝑧)𝑧−1 + 0.5𝑋(𝑧) + 𝑋(𝑧)𝑧−1 + 0.5𝑋(𝑧)𝑧−3

By using the inverse Z-transform, we obtain:

𝑦(𝑛) = −0.5𝑦(𝑛 − 1) + 0.5𝑥(𝑛) + 𝑥(𝑛 − 1) + 0.5𝑥(𝑛 − 3)

1.3.5 Stability of a digital filter

As with analog filters, it is possible to predict the stability or instability of the corresponding

physical system from the transmittance.

To determine if a continuous analog system with transmittance 𝑇(𝑝) is stable, the poles are

calculated as the values of p that nullify the denominator. The system is stable if the poles are negative

or complex with a negative real part. If these poles are plotted in the complex plane, they are all located

in the left half-plane.

This stability criterion also applies to the transmittancesT∗(p) of sampled systems. A sampled

system with transmittance T∗(p) is stable if all its poles are negative or complex with a negative real

part.

Since most work with sampled systems is done using transmittances in Z, it is useful to examine

the position of the poles 𝑧𝑖 in the plane for a stable system. We know that z and p are related by the

variable change: 𝑧 = 𝑒𝑇𝑒𝑝

A stable system will have poles 𝑝𝑖 = 𝑎 + 𝑗𝑏𝑖 , with 𝑎𝑖 < 0.

The corresponding point 𝑧𝑖 = 𝑒
𝑇𝑒𝑝𝑖 = 𝑒𝑇𝑒(𝑎+𝑗𝑏𝑖) = 𝑒𝑇𝑒𝑎𝑖(𝑐𝑜𝑠𝑏𝑖 + 𝑗𝑠𝑖𝑛𝑏𝑖) is such that the magnitude of

the complex number 𝑒𝑇𝑒𝑎𝑖 satisfies |𝑧𝑖| < 1.

𝑇(𝑧) =
1 + 2𝑧−1 + 𝑧−3

2 + 𝑧−1
 𝑥(0), 𝑥(1), 𝑥(2)…. 𝑦(0), 𝑦(1), 𝑦(2)….

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

23

We deduce a graphical stability criterion for a sampled system: A sampled system with transmittance

T(z) is stable if all its poles are inside the unit circle.

Figure 1.8: Stability criterion of a digital system

1.3.6 Representation of a Digital Filter

A digital filter can be represented using several types of specifications, including:

1.3.6.1 Z-Transfer Function

This is the most common representation. It links the input and output in the Z-plane as 𝑌(𝑧) =

𝐻(𝑧). 𝑋(𝑧). Going forward, we will assume:

𝐻(𝑧) =
𝑁(𝑧)

𝐷(𝑧)
=

∑ 𝑏𝑖𝑧
−𝑖𝑁

𝑖=0

1 + ∑ 𝑎𝑖𝑧−𝑖
𝑁
𝑖=1

Where 𝑁(𝑧) is the numerator polynomial of the transfer function, and 𝐷(𝑧) is its denominator. Here, N

represents the filter's order. If 𝐻(𝑧) has poles, the filter is called an IIR filter (Infinite Impulse Response).

If 𝑁(𝑧) = 1, the filter is referred to as an all-pole filter. In the case where 𝐷(𝑧) = 1, the filter only has

zeros, corresponding to FIR filters (Finite Impulse Response).

This type of filter has no equivalent in analog filtering, and we will see that its properties make it a

widely used function in digital signal processing.

1.3.6.2 Impulse Response

The impulse response is the inverse Z-transform of 𝐻(𝑧).

𝐻(𝑧) = ∑ℎ(𝑛)𝑧−𝑛
∞

𝑛=0

As in analog filtering, the output of a filter 𝑦(𝑛𝑇) is the result of the convolution of the input signal,

represented in the time domain 𝑥(𝑛𝑇), with the impulse response of the filter ℎ(𝑛𝑇). Thus, we have

𝑦(𝑛𝑇) = 𝑥(𝑛𝑇) ∗ ℎ(𝑛𝑇), or, ignoring the sampling period T:

𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛)

 = ∑𝑥(𝑘)ℎ(𝑛 − 𝑘)

∞

𝑘=0

 = ∑ 𝑥(𝑛 − 𝑘)ℎ(𝑘)∞
𝑘=0 ,

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

24

In the case where 𝑥(𝑛) is an impulse 𝛿(𝑛), we indeed obtain 𝑦(𝑛) = ℎ(𝑛). Depending on whether ℎ(𝑛)

has infinite or finite support, we will obtain the respective types of filters: IIR (Infinite Impulse

Response) and FIR (Finite Impulse Response).

1.3.6.3 Difference Equation

An inverse Z-transform of the equation from the first representation leads to the following form:

𝑦(𝑛) =∑𝑏𝑖𝑥(𝑛 − 𝑖)

𝑁

𝑖=0

−∑𝑎𝑖𝑦(𝑛 − 𝑖)

𝑁

𝑖=1

Here, we identify two distinct parts: one that depends on the current and previous values of the input

𝑥(𝑛), and another that depends on the previous values of the output 𝑦(𝑛). Depending on whether the

coefficients 𝑎𝑖 are non-zero or zero, we refer to these as recursive filters or non-recursive filters.

1.3.7 Specifications of a Digital Filter

Before a digital filter is designed and implemented, its specifications need to be defined. A filter

must allow certain frequencies to pass while attenuating (or even eliminating) others. Therefore, we

need to be able to represent these constraints. There are four basic types of filters:

1.3.7.1 Low-pass filters

 allow frequencies below a cutoff frequency 𝑓𝑐 to pass and block those above it (see Figure 1.9.a).

1.3.7.2 High-pass filters

block frequencies below a cutoff frequency 𝑓𝑐 and allow those above it to pass (see Figure 1.9.b).

1.3.7.3 Band-pass filters

allow frequencies around a central frequency 𝑓0(or between 𝑓𝑐1 and 𝑓𝑐2) to pass and block others (see

Figure 1.9.c).

1.3.7.4 Band-stop filters

block frequencies around a central frequency 𝑓0(or between 𝑓𝑐1 and 𝑓𝑐2) and allow others to pass (see

Figure 1.9.d).

Figure 1.9: Ideal Frequency Responses of the 4 Basic Filters

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

25

The filters shown in Figure 1.9 are ideal. In practice, however, filters cannot have discontinuities.

The transition between passbands and stopbands occurs through so-called 'transition zones,' where the

width of the zone determines the filter's selectivity. Additionally, the passbands and stopbands are not

perfectly flat; they exhibit ripples. The amplitude of these ripples is described by the ripple parameter

in the passband and the attenuation level in the stopband.

Figure 1.10: Ideal and actual frequency response of lowpass filters

1.4 Classification of Digital Filters

Digital filters can be classified based on several criteria:

 Impulse Response Length: This classification distinguishes between two types of filters: IIR

(Infinite Impulse Response) and FIR (Finite Impulse Response).

 Structure or Representation: This classification differentiates between recursive and non-

recursive filters.

It is important to note that, with the exception of specific cases, recursive filters are typically equivalent

to IIR filters, while non-recursive filters correspond to FIR filters.

1.4.1 Finite Impulse Response (FIR) Digital Filters

FIR filters cannot be derived from analog filters. However, they are widely used because they

have unique properties (linear phase, stability, flexibility). The equations below show the transfer

function in the z-domain and the corresponding difference equation for the general form of an FIR filter.

𝐻(𝑧) = ∑ℎ(𝑛)𝑧−𝑖
𝑁

𝑖=0

𝑦(𝑛) =∑𝑏𝑖𝑥(𝑛 − 𝑖)

𝑁

𝑖=0

=∑ℎ(𝑖)𝑥(𝑛 − 𝑖)

𝑁

𝑖=0

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

26

It is noted that the coefficients 𝑏𝑖 of the filter are also the values of the impulse response ℎ(𝑘),

which is therefore limited in time.

𝐻(𝑧) = ∑𝑏𝑖𝑧
−𝑖 ⟺

𝑁

𝑖=0

ℎ(𝑛) =∑𝑏𝑖𝛿(𝑛 − 𝑖)

𝑁

𝑖=0

ℎ(𝑛) = {
𝑏𝑛 𝑡𝑜 0 ≤ 𝑛 ≤ 𝑁
0 otherwise

1.4.1.1 Characteristics of FIR Filters

The main characteristics of FIR filters are:

 A transition band that will always be wider than that of an IIR filter with the same number of

coefficients;

 Synthesis methods allowing any frequency response to be derived;

 Inherent stability (∑ |ℎ(𝑛)| < ∞𝑁
𝑛=0);

 Greater numerical stability than IIR filters;

 A phase that can be exactly linear, therefore no harmonic distortion in the signal;

 Easier implementation in a digital signal processing system.

1.4.1.2 Structure of FIR Filters

Although there are several practical implementations for FIR filters, the direct form structure and its

transposed counterpart are among the most commonly used.

 Direct Form FIR Filter

The direct form FIR filter structure calculates the output 𝑦(𝑛) as a weighted sum of the current and past

input values, where 𝑥(𝑛) is the input signal at time n, and the 𝑧−1 blocks represent unit delays, each

shifting the input by one sample. The filter coefficients 𝑏0, 𝑏1, 𝑏0, 𝑏0,…,𝑏𝑞 are applied to the delayed

input samples, and the output is obtained by summing the products of these delayed inputs and their

corresponding coefficients. The difference equation for the filter is:

𝑦(𝑛) =∑𝑏𝑖𝑥(𝑛 − 𝑖)

𝑞

𝑖=0

= 𝑏0𝑥(𝑛) + 𝑏1𝑥(𝑛 − 1) + ⋯+ 𝑏𝑞−1𝑥(𝑛 − (𝑞 − 1)) + 𝑏𝑞𝑥(𝑛 − 𝑞)

In this form, all designed filter coefficients are typically intended for implementation in the direct form

structure. The direct form structure and the associated difference equation are often recommended for

fixed-point implementations due to the use of a single accumulator, which helps to mitigate issues

related to limited precision in such systems.

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

27

Figure 1.11: Direct Structure

 Direct Form Transposed FIR Filter

The Figure 1.12 represents a Direct Form Transposed FIR filter structure, which is commonly

recommended due to its superior numerical precision, particularly in floating-point arithmetic. This

advantage arises because floating-point addition is performed on numbers of similar magnitude,

minimizing the undesirable effects of numerical damping.

Mathematically, the output can be described by the following set of recursive equations:

𝑦(𝑛) = 𝑏0𝑥(𝑛) + 𝜔1(𝑛 − 1)

𝜔1(𝑛) = 𝑏1𝑥(𝑛) + 𝜔2(𝑛 − 1)

𝜔2(𝑛) = 𝑏2𝑥(𝑛) + 𝜔3(𝑛 − 1)

⋮ = ⋮ + ⋮

 𝜔𝑞(𝑛) = 𝑏𝑞𝑥(𝑛)

These equations describe the intermediate variables 𝜔𝑖(𝑛), which represent accumulated products of

the input signals and the corresponding filter coefficients. As the input signal 𝑥(𝑛) propagates through

the structure, each 𝜔𝑖(𝑛) contributes to the final output signal 𝑦(𝑛), resulting in a weighted sum of the

current and delayed input values.

Figure 1.12 : Transposed Structure

1.4.2 Advantages of FIR Filters

 Linear Phase: FIR filters can be easily designed to have a linear phase. This means that no

phase distortion is introduced into the signal being filtered, as all frequencies are shifted in time

by the same amount, thus maintaining their relative harmonic relationships (i.e., constant group

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

28

and phase delay). This is not the case with IIR filters, which have a non-linear phase

characteristic.

 Stability: Since FIR filters do not use previous output values to compute their current output

(i.e., they have no feedback), they can never become unstable for any type of input signal. This

gives them a distinct advantage over IIR filters.

 Arbitrary Frequency Response: The ability to design an FIR (Finite Impulse Response) filter

with an arbitrary frequency response is a significant advantage for engineers and designers. The

Parks-McClellan algorithm is a widely used technique for creating FIR filters that can achieve

specific magnitude responses over a defined frequency range.

This algorithm optimally designs the filter by minimizing the maximum error between the

desired and actual frequency responses, allowing for greater flexibility in meeting design

specifications.

 Fixed Point Performance: The effects of quantization are less severe in FIR filters compared

to IIR filters.

1.4.3 Disadvantages of FIR Filters

 High Computational and Memory Requirement: FIR filters usually require many more

coefficients to achieve a sharp cut-off than their IIR counterparts. Consequently, they require

significantly more memory and a higher number of multiply-and-accumulate operations.

However, modern microcontroller architectures based on Arm's Cortex-M cores now include

DSP hardware support via SIMD (Single Instruction, Multiple Data) that significantly speeds up

the filtering operation.

 Higher Latency: The higher number of coefficients generally makes a linear phase FIR filter

less suitable than an IIR filter for fast, high-throughput applications. This can be problematic for

real-time closed-loop control applications, where a linear phase FIR filter may have too much

group delay to ensure loop stability.

 Minimum Phase Filters: To overcome the inherent N/2 latency (group delay) in a linear filter,

one can use a minimum phase filter, where any zeros outside the unit circle are moved to their

conjugate reciprocal locations inside the unit circle. The result of this zero flipping is that the

magnitude spectrum will be identical to the original filter, and the phase will be nonlinear. Most

importantly, the latency will be reduced from N/2 to something much smaller (though non-

constant), making it more suitable for real-time control applications. For applications where

phase is less important, this may seem ideal. However, the difficulty arises in the numerical

accuracy of the root-finding algorithm when dealing with large polynomials. Therefore, orders

of 50 or 60 should be considered a maximum when using this approach. Although other methods

exist (e.g., the Complex Cepstrum), transforming higher-order linear phase FIR filters to their

minimum phase counterparts remains a challenging task.

 No Analog Equivalent: Using the Bilinear Transform or matched z-transform (s-z mapping),

an analog filter can be easily transformed into an equivalent IIR filter. However, this is not

possible for an FIR filter, as it has no analog equivalent.

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

29

1.4.4 FIR Filter Design

FIR filters are only realizable in the discrete domain. Consequently, their design methods are not

derived from analog filters. There are three main methods of synthesis:

 The Windowing Method: This involves applying a window of size N to the equivalent ideal

filter.

 The Frequency Sampling Method: This method uses the inverse Discrete Fourier Transform

(IDFT) from a discrete function that represents the filter and is defined in the frequency domain.

 Optimization Methods: These focus on minimizing an error criterion between the actual filter

response and the ideal filter. The most commonly used is the Parks and McClellan method,

which reformulates the filter design problem as a polynomial approximation.

1.4.4.1 FIR Filter Design by Windowing

We will explain the window method by using an example. Suppose we want to design a lowpass

filter with a cutoff frequency of 𝜔𝑐, i.e., the desired frequency response will be:

𝐻𝑑(𝜔) = {
1 |𝜔| < 𝜔𝑐
0 𝑒𝑙𝑠𝑒

…… . . (∗)

To find the equivalent time-domain representation, we calculate the inverse discrete-time Fourier

transform:

ℎ𝑑(𝑛) =
1

2𝜋
∫ 𝐻𝑑(𝜔)𝑒

𝑖𝜔𝑛𝑑𝜔……(∗∗)
+𝜋

−𝜋

Substituting Equation (∗) into Equation (∗∗), we obtain:

ℎ𝑑(𝑛) =
1

2𝜋
∫ 𝐻𝑑(𝜔)𝑒

𝑖𝜔𝑛𝑑𝜔
+𝜔𝑐

−𝜔𝑐

=
𝑠𝑖𝑛(𝑛𝜔𝑐)

𝑛𝜋
…… . (∗∗∗)

Equation (∗∗∗) for 𝜔𝑐 =
𝜋

4
 is shown in Figure 1.13:

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

30

Figure 1.13: Impulse response of an ideal lowpass filter with 𝜔𝑐=
𝜋

4

Figure 1.13 shows that ℎ𝑑(𝑛) needs an infinite number of input samples to perform filtering and

that the system is not a causal system.

The obvious solution will be to truncate the impulse response and use, for example, only 21 samples of

the input and assume other coefficients to be zero. Intuition suggests that, as the number of samples

increases, the truncated impulse response will be closer to the ideal impulse response in Figure 1.13 and

therefore the frequency response of the achieved filter will be closer to Equation (∗). On the other hand,

as we increase the number of samples, more hardware will be required. If we choose to use only 21 taps

of the ideal response, there will be three options which are shown in Figures 1.14 to Figures 1.16. The

first option is shown in Figure 1.14. This impulse response corresponds to a non-causal system and

cannot be used.

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

31

Figure 1.14: Truncated impulse response: linear-phase, but non-causal

 The next option is shown in Figure 1.15 which, despite being causal, does not have a linear-

phase response (the most important property of an FIR system).

Figure 1.15: Truncated impulse response: causal, but nonlinear-phase

The last option is shown in Figure 1.16. This system is both causal and linear phase. The only

drawback to this system is its delay which is
𝑀−1

2
 samples. In other words, in response to an impulse at

𝑛 = 0, the system will not react until almost 𝑛 =
𝑀−1

2
. This delay may cause problems in some

applications.

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

32

Figure 1.16: Truncated impulse response: causal and linear phase

Truncation of the impulse response is equivalent to multiplying ℎ𝑑(n) (or its shifted version) by

a rectangular window, 𝜔(n) which is equal to one for n = 1, … ,M − 1 and zero otherwise. Therefore,

considering the applied shift, we obtain the impulse response of the designed filter:

ℎ(n) = ℎ𝑑 [𝑛 −
𝑀 − 1

2
]𝜔(n)

Clearly the spectrum of the rectangular window will cause the filter response to deviate from the

ideal response in Equation (∗). Figure (∗∗) compares the response of the designed filter with that of the

ideal one. This figure shows that, unlike the ideal filter, the designed filter has a smoother transition

from the passband to the stopband. Moreover, there are some ripples in both the passband and stopband

of 𝐻(𝜔).How can we make the transition band sharper? How can we make the ripples smaller? What

other options are there to be used instead of a rectangular window?

Figure 1.17: Frequency response of the filter designed by a rectangular window

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

33

Summary

 To design a digital filter, we need to find the coefficients, 𝑎𝑘 and 𝑏𝑘 .

 An FIR filter is a special case of Equation 𝐻(𝑧) =
∑ 𝑏𝑘𝑧

−𝑘𝑀−1
𝑘=0

∑ 𝑎𝑘𝑧
−𝑘𝑁−1

𝑘=0

, where 𝑎0 = 1 and 𝑎𝑘 = 0 for

k = 1,… , N − 1.

 Stability and linear-phase response are the two most important advantages of an FIR filter over

an IIR filter.

 A linear-phase frequency response corresponds to a constant delay.

 Truncation of the impulse response is equivalent to multiplying ℎ𝑑(n) by a rectangular window,

𝜔(n), which is equal to one for n = 1,… ,M − 1 and zero otherwise.

 A wider transition band and ripples in the passband and stopband are the most important

differences between the ideal filters and those designed by window method.

1.4.4.2 Frequency Sampling Method

The frequency sampling method for filter design is based on the frequency response of an ideal

continuous filter 𝐻(𝑓), for which the exact mathematical formula may be unknown. As a result, we

cannot directly compute the time-domain impulse response ℎ(𝑛) through the inverse Fourier transform

of 𝐻(𝑓). Instead, we approximate the desired response using a set of sampled frequency values and

apply the inverse Discrete Fourier Transform (IDFT) to obtain ℎ(𝑛). This means we "sample" the

desired response in the frequency domain, obtaining N points from this frequency response, which

correspond to N points of the equivalent time-domain response obtained through the inverse DFT as

follows:

We begin by sampling 𝐻(𝑓): 𝐻(𝑘) = 𝐻(𝑘)|𝑘
𝑁

 𝑘 =
−(𝑁−1)

2
 𝑡𝑜

(𝑁−1)

2

then the inverse DFT is applied: ℎ(𝑛) =
1

𝑁
∑ 𝐻(𝑘)𝑒

2𝜋𝑗𝑘𝑛

𝑁
 𝑘=

(𝑁−1)

2

 𝑘=
−(𝑁−1)

2

This synthesis method is very simple and allows the realization of any filter shape (something that

cannot be achieved with the previous method). However, this synthesis method only guarantees the

frequency points 𝐻(𝑘). Between these points, the value of 𝐻(𝑓) is not controlled, and oscillations may

occur that are not evenly distributed, with the maximum error between the ideal response and the

obtained response typically occurring around the transition band. To obtain the frequency response of

the final filter, one can apply a DFT to the obtained impulse response ℎ(𝑛) of size N, after adding a

large number of zeros. Additionally, due to the use of an inverse DFT on N points, the resulting impulse

response ℎ(𝑛) is periodic with a period N, even though the desired ideal impulse response is not of

limited duration.

Example: We aim to implement an ideal low-pass filter in digital form with a cutoff frequency 𝑓𝑐 =
𝑓0

10

and ∆𝑓 < 𝑓𝑐 =
𝑓0

16
. We therefore take N=17, which gives us ∆𝑓 =0.0588.

We have: 𝑁 = 17, 𝐻(0) = 𝐻(−1) = 𝐻(1) = 1 and 𝐻(2) = 𝐻(−2) = ⋯ = 𝐻(8) = 𝐻(−8) = 0

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

34

0.8 H(0) H(1)

We can deduce the values of the impulse response through the Discrete Fourier Transform (DFT):

ℎ(𝑛) =
1

𝑁
∑ 𝐻(𝑘)𝑒

2𝜋𝑗𝑘𝑛

𝑁 =
 𝑘=

(𝑁−1)

2

 𝑘=
−(𝑁−1)

2

1

𝑁
(1 + 𝑒

−2𝜋𝑗𝑛

17 + 𝑒
2𝜋𝑗𝑛

17)

ℎ(𝑛) =
1

17
(1 + 2cos (

2𝜋𝑛

17
) for −8 ≤ 𝑛 ≤ 8

Figure 1.18: Impulse response ℎ(𝑛) of the filter

Finally, to make this filter physically realizable, the impulse response is shifted by 8 samples.

 H(2) H(3) H(4) H(5) H(6) H(7) H(8)

Figure 1.19: Comparison of Filter Responses Using Frequency Sampling and Windowing Methods

Given that 𝐻∗(𝑘) = 𝐻(−𝑘) for a real signal ℎ(𝑛), we can generally demonstrate the following:

ℎ(𝑛) =
1

𝑁
(𝐻(0) + 2∑ 𝐻(𝑘)

(𝑁−1)

2

 𝑘=1
cos (

2𝜋𝑛

𝑁
) for −

𝑁

2
≤ 𝑛 ≤

𝑁

2

The reduction of oscillations can also be achieved through windowing. Below are the coefficients

of the filter ℎ(𝑛), followed by those obtained after applying the Hamming window ℎ𝑁
′ (𝑛).

Table 1.2: Filter Coefficients ℎ(𝑛) and Reduced Oscillations Using Hamming Window ℎ𝑁
′ (𝑛)

n 0 1 2 3 4 5 6 7 8

h(n) -0,0257 -0,0269 -0,0153 0,0114 0,0514 0,0985 0,1430 0,1749 0,1865

h'N(n) -0,0020 -0,0031 -0,0033 0,0041 0,0279 0,0705 0,1237 0,1688 0,1865

n 9 10 11 12 13 14 15 16

h(n) 0,1749 0,1430 0,0985 0,0514 0,01139 -0,0153 -0,0269 -0,0257

h'N(n) 0,1688 0,1237 0,0705 0,0279 0,0041 -0,0032 -0,0031 -0,0020

16

X

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

35

16

X
16

 0 500 1000 1500 2000

Figure 1.20: Pole-Zero Plot in the Complex Plane

Remarks

 When choosing N, ensure that
𝑓𝑒

𝑁
 is less than ∆𝑓. Additionally, the ripples can be somewhat mitigated

by smoothing the transitions in the filter's frequency response. To do this, 0.5 will be introduced between

1 and 0. However, this will increase ∆𝑓, so N will need to be adjusted accordingly (2∆𝑓 <
𝑓𝑒

16
). This

will result in a value of N of 33 and ∆𝑓 =0.0303.

We will set 𝐻(3) = 𝐻(−3) = 0.5 Thus, 𝐻(0) = 𝐻(−1) = 𝐻(1) = 𝐻(2) = 𝐻(−2) = 1

ℎ(𝑛) =
1

33
(1+ 2 cos(

2𝜋𝑛

33
) + 2 cos(

4𝜋𝑛

33
) + cos(

6𝜋𝑛

33
))

For −16 ≤ 𝑛 ≤ 16

 H(4) H(5)……………………………….……………………………H(16)

Figure 1.21: Comparison of Impulse Responses h(n) for Different N Values (N=17 and N=33)

 0.8 H(0) H(1) H(2)

0.6

H(3)

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

36

1.5 Infinite Impulse Response (IIR) Digital Filters

Analog filters inherently have an infinite impulse response. IIR digital filters behave similarly,

except for the effects caused by discretization. This category of filter is also characterized by a transfer

function in the z-domain that contains poles, and by a recursive difference equation, meaning the output

𝒚(𝒏) depends on both the current inputs and previous outputs. The equations below show the z-domain

transfer function and the corresponding difference equation for the general form of an IIR filter. Here,

N is referred to as the filter order.

𝐻(𝑧) =
𝑁(𝑧)

𝐷(𝑧)
=

∑ 𝑏𝑖𝑧
−𝑖𝑁

𝑖=0

1 + ∑ 𝑎𝑖𝑧−𝑖
𝑁
𝑖=1

𝑦(𝑛) =∑𝑏𝑖𝑥(𝑛 − 𝑖)

𝑁

𝑖=0

−∑𝑎𝑖𝑦(𝑛 − 𝑖)

𝑁

𝑖=1

1.5.1 IIR Filter Topologies

The following equation shows that an IIR filter 𝐻(𝑧) can be represented as the product of two

structures: one being an FIR filter 𝑁(𝑧), and the other an all-pole IIR filter
1

𝐷(𝑧)
.

𝐻(𝑧) =
𝑁(𝑧)

𝐷(𝑧)
= 𝑁(𝑧) ×

1

𝐷(𝑧)
=∑𝑏𝑖𝑧

−𝑖

𝑁

𝑖=0

×
1

1 + ∑ 𝑎𝑖𝑧−𝑖
𝑁
𝑖=1

IIR filter topologies can be classified as:

 Direct Type I or Type II

 Transposed

In addition, filters can be either monolithic or built from cascades of smaller (typically second order)

sections.

 Direct Type I

This is a basic structure for implementing IIR filters, where the filter's transfer function is divided

into a numerator (representing the feedforward terms) and a denominator (representing the feedback

terms). The input signal is delayed and processed through both the feedforward and feedback sections

to generate the output. While it can be used in both fixed-point and floating-point implementations, it

may not always provide optimal numerical precision.

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

37

 Direct Type II

This is an improved variation of the Direct Form Type I structure. The main distinction is that it

minimizes the number of delay elements needed by merging the separate delay chains for the numerator

and denominator into a single chain. This design can be more efficient, especially in hardware

implementations. It is often more stable and provides better numerical precision compared to Type I.

 Figure 1.22: Direct Structures of IIR Filters

 Transposed Type II

In the transposed form, the multiplication and addition operations are rearranged compared to the

direct form structures, with the feedback and feedforward paths swapped. Transposed forms typically

offer improved numerical performance, particularly in floating-point implementations, as they reduce

rounding errors by performing additions between numbers of similar magnitude. Both Type I and Type

II structures have corresponding transposed versions.

x[n]

+

v[n]

- a[1]

z -1

s1[n]

b[0]

b[1]

y[n]

+

+ +

z -1

- a[2]

+
s2[n]

b[2]

+

- a[N-1]
s [n]

b[N-1]

+
N-1

+

z -1

- a[N]
s [n]

b[N]
N

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

38

Figure 1.23: Transposed type II of IIR Filters

1.5.2 IIR Filter Design

The design of a digital filter involves finding a function 𝐻(𝑧) (or ℎ(𝑘)) that meets the specified

requirements in the form of a template. This function can be determined using various methods. The

most common method is to use analog filter design techniques to obtain a function 𝐻(𝑝) that meets the

specifications. A function that transforms the P-domain into the Z-domain (i.e., 𝑝 = 𝑓(𝑧)) is then used

to derive 𝐻(𝑧). This transformation must preserve the stability of the analog filter and, as much as

possible, maintain the frequency response characteristics of the digital filter. Three types of

transformations are commonly used: the impulse invariance method, the Euler transformation, and the

bilinear transformation.

 IIR Filter Design Using Bilinear Transformation

Principle: An analog filter is provided with a frequency response that meets the required specifications

(such as a Butterworth filter).

Objective: To find a digital IIR filter with a frequency response equivalent to that of the analog filter.

Note: The matching of the frequency responses is limited to the useful frequency range of the digital

filter, specifically for frequencies between
𝑓𝑠

2
 and 0.

To obtain the transfer function of the digital filter using bilinear transformation, the variable p in

the transfer function of the analog filter is replaced by:
2

𝑇

1−𝑧−1

1+𝑧−1

where T is the sampling period.

Example

Design a digital low-pass Butterworth filter using the bilinear transformation method with the

following specifications:

 Analog cutoff frequency: 𝜔𝑐 = 1000
𝑟𝑎𝑑

𝑠⁄

 Sampling frequency: 𝐹𝑠 = 8000 𝐻𝑧

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

39

 Order of the filter: N=1 (first-order Butterworth filter)

Step-by-Step Solution:

Step 1: Define the Analog Filter Transfer Function

The transfer function of a first-order analog Butterworth filter is given by:

𝐻(𝑝) =
𝜔𝑐

𝑝 + 𝜔𝑐

where 𝜔𝑐=1000 rad/s is the analog cutoff frequency.

Thus, the analog transfer function becomes:

𝐻(𝑝) =
1000

𝑝 + 1000

Step 2: Apply the Bilinear Transformation

The bilinear transformation is given by:

2

𝑇

1 − 𝑧−1

1 + 𝑧−1

where 𝑇 =
1

𝐹𝑠
= 8000 = 0.000125 seconds is the sampling period.

Substituting this into the analog transfer function 𝐻(𝑝), we replace s with the bilinear transformation:

𝐻(𝑧) = 𝐻(
2

𝑇

1 − 𝑧−1

1 + 𝑧−1
)

First, calculate the term: 𝑝 =
2

0.000125

1−𝑧−1

1+𝑧−1
=16000

1−𝑧−1

1+𝑧−1

Now, substitute this into the analog transfer function:

𝐻(𝑧) =
1000

16000
1 − 𝑧−1

1 + 𝑧−1
+ 1000

Simplify the expression:

𝐻(𝑧) =
1000(1+ 𝑧−1)

16000(1 − 𝑧−1) + 1000(1 + 𝑧−1)

𝐻(𝑧) =
1000(1+ 𝑧−1)

17000 − 1500𝑧−1

Step 3: Final Digital Filter Transfer Function

Thus, the digital filter's transfer function becomes:

𝐻(𝑧) =
1000(1+ 𝑧−1)

17000 − 1500𝑧−1

We can simplify this by dividing both the numerator and the denominator by 17000:

𝐻(𝑧) =

1000
17000 (1 + 𝑧

−1)

1 −
1500
17000𝑧

−1

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

40

𝐻(𝑧) =
0.0588(1+ 𝑧−1)

1 − 0.8824𝑧−1

Step 4: Difference Equation Form

The digital filter transfer function can now be converted into the time-domain difference equation using:

𝐻(𝑧)
𝑌(𝑧)

𝑋(𝑧)
=
0.0588(1 + 𝑧−1)

1 − 0.8824𝑧−1

This corresponds to the following difference equation:

𝑦(𝑛) − 0.8824𝑦(𝑛 − 1) = 0.0588× 𝑥(𝑛) + 0.0588 × 𝑥(𝑛 − 1)

Or equivalently:

𝑦(𝑛) = 0.8824𝑦(𝑛 − 1) + 0.0588× 𝑥(𝑛) + 0.0588 × 𝑥(𝑛 − 1)

In this example, we designed a digital low-pass Butterworth filter using the bilinear transformation

method. We started with an analog Butterworth filter with a cutoff frequency of 1000 rad/s and a

sampling frequency of 8000 Hz. After applying the bilinear transformation, we obtained the digital

filter's transfer function and the corresponding difference equation. This process can be extended to

higher-order filters and other filter types (e.g., high-pass, band-pass, etc.).

1.5.2.1 Advantages of IIR digital filters

 Low implementation cost: requires less coefficients and memory than FIR filters in order to

satisfy a similar set of specifications, i.e., cut-off frequency and stopband attenuation.

 Low latency: suitable for real-time control and very high-speed RF (Radio Frequency)

applications by virtue of the low number of coefficients.

 Analog equivalent: May be used for mimicking the characteristics of analog filters using p-z

plane mapping transforms.

1.5.2.2 Disadvantages of IIR digital filters

 Non-linear phase characteristics: The phase charactersitics of an IIR filter are generally

nonlinear, especially near the cut-off frequencies. All-pass equalisation filters can be used in

order to improve the passband phase characteristics.

 More detailed analysis: Requires more scaling and numeric overflow analysis when

implemented in fixed point. The Direct form II filter structure is especially sensitive to the

effects of quantisation, and requires special care during the design phase.

 Numerical stability: Less numerically stable than their FIR (finite impulse response)

counterparts, due to the feedback paths.

https://www.advsolned.com/linear-phase-iir-filters-analysis-and-design/

Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters

41

Figure 1.24: Example of filtering on a sound file

Application of a filter for edge detection

 Figure 1.25: Example of filtering on an image file

2 Chapter 2: Averaging Filter and

Median Filter

Chapter 2: Averaging Filter and the Median Filter

43

2.1 Averaging Filter

Physiological signals, such as electrocardiograms (ECG), electroencephalograms (EEG), as

well as medical images like MRIs (Magnetic Resonance Imaging) or X-rays, are essential tools

for diagnosing and monitoring diseases. However, these signals and images are often affected by

various types of noise and artifacts, making their analysis more complex. To enhance the quality

of this data and extract clear and reliable information, the application of appropriate filtering

techniques is crucial. Among these techniques, the averaging and median filters are particularly

common. The averaging filter is a linear filter that replaces each sample or pixel with the average

of the neighboring values within a defined window. In equation form, this can be written as :

𝑦[𝑖] =
1

𝑀
∑ 𝑥[𝑖 + 𝑗]

𝑀−1

𝐽=0

Example

𝑦(70) =
𝑥(70) + 𝑥(71) + 𝑥(72) + 𝑥(73) + 𝑥(74)

5

Alternatively, the group of points from the input signal can be chosen symmetrically around

the output point.

𝑦(70) =
𝑥(68) + 𝑥(69) + 𝑥(70) + 𝑥(71) + 𝑥(72)

5

This corresponds to changing the summation in equation (1) from 𝑗 = 0 to 𝑀 − 1 to
−(𝑀−1)

2

à
(𝑀−1)

2
.

By smoothing rapid variations and reducing random noise, this filter is widely used in the

processing of physiological signals and medical images. In the case of physiological signals, it

helps to attenuate minor fluctuations that can obscure important information. For medical imaging,

the averaging filter reduces background noise, thereby improving the visibility of anatomical

structures. However, its application can lead to edge blurring or loss of details, which is a

significant limitation when applied to medical images or signals where abrupt transitions are

important.

Example

 Consider a filter that performs a sliding average on the most recent samples arriving at the input.

The algorithm is written as follows:

𝑦(𝑛) =
𝑥(𝑛)+ 𝑥(𝑛 − 1) + 𝑥(𝑛 − 2) + 𝑥(𝑛 − 3)

4

= 0.25. [𝑥(𝑛)+ 𝑥(𝑛 − 1)+ 𝑥(𝑛 − 2) + 𝑥(𝑛 − 3)]

Chapter 2: Averaging Filter and the Median Filter

44

From the algorithm, it is easy to manually calculate the outputs at times 𝑇, 2𝑇, …to observe the

behavior of the filter.

𝒚(𝟎) = 𝟎. 𝟐𝟓𝒙(𝟎) = 𝟎. 𝟐𝟓 × 𝟎 = 𝟎

𝒚(𝟏) = 𝟎. 𝟐𝟓[𝒙(𝟎) + 𝒙(𝟏)] = 𝟎. 𝟐𝟓[𝟎 + 𝟏] = 𝟎. 𝟐𝟓 × 𝟏 = 𝟎. 𝟐𝟓

𝒚(𝟐) = 𝟎. 𝟐𝟓[𝒙(𝟎) + 𝒙(𝟏) + 𝒙(𝟐)] = 𝟎. 𝟐𝟓[𝟎 + 𝟏 + 𝟓] = 𝟎. 𝟐𝟓 × 𝟔 = 𝟏. 𝟓

𝒚(𝟑) = 𝟎. 𝟐𝟓[𝒙(𝟎) + 𝒙(𝟏) + 𝒙(𝟐) + 𝒙(𝟑)] = 𝟎. 𝟐𝟓[𝟎 + 𝟏 + 𝟓 + 𝟐] = 𝟎. 𝟐𝟓 × 𝟖 = 𝟐

𝒚(𝟒) = 𝟎. 𝟐𝟓[𝒙(𝟏) + 𝒙(𝟐) + 𝒙(𝟑) + 𝒙(𝟒)] = 𝟎. 𝟐𝟓[𝟏 + 𝟓 + 𝟐 + 𝟒] = 𝟎. 𝟐𝟓 × 𝟏𝟐 = 𝟑

𝒚(𝟓) = 𝟎. 𝟐𝟓[𝒙(𝟐) + 𝒙(𝟑) + 𝒙(𝟒) + 𝒙(𝟓)] = 𝟎. 𝟐𝟓[𝟓 + 𝟐 + 𝟒 + 𝟓] = 𝟎. 𝟐𝟓 × 𝟏𝟔 = 𝟒

Figure 2.1: Digital filter for averaging four input values

Note: This manual study is only feasible for very simple filters. For more complex filters, software

tools are used.

2.1.1 Example Application for a Physiological Signal

An electrocardiogram (ECG) is an electrophysiological signal that describes the electrical

behavior of the human heart. The electrocardiographic signal (ECG) requires several

measurements from different parts of the patient's body (biomedical instrumentation). However,

the presence of electrical equipment introduces disturbances that affect the instrumentation system.

The amplitude of the ECG is about 1 mV, and its bandwidth ranges from 0.5 to 100 Hz. Figure 2.2

shows an electrocardiographic signal extracted from the Physionet signal database, along with its

components in the frequency domain.

Figure 2.2: Proposed ECG Signal and Its Spectrum

𝒙(𝒏)

Digital filter

𝒚(𝒏)

Chapter 2: Averaging Filter and the Median Filter

45

This signal will be modified by adding noise corresponding to the interference generated by

nearby electrical lines, which is common in ECG signals once they are acquired. The resulting

waveform is shown in Figure 2.3. This new version of the original signal is closer to a real-world

scenario where various factors, such as electrical lines, can introduce unwanted data into the time

window. Next, the averaging filter can be obtained using a simple MATLAB code.

Figure 2.3: ECG Signal Distorted by Electrical Line Noise

As a result, the initially added noise is significantly reduced, as shown in Figure 2.4. This

demonstrates that the averaging filter is highly effective as a low-pass filter, removing unwanted

components from the studied signal. Additionally, the computational load is not demanding for

real-time applications.

Figure 2.4: Filtered ECG Signal Using an Averaging Filter with M=8

2.1.2 Local Averaging Filter Application in Medical Imaging

The averaging filter is part of the category of local image filters because it computes the new

value of a pixel based on the values of neighboring pixels. Specifically, the filtered value of a pixel

p is equal to the average of the values of the pixels surrounding p. Generally, the "neighboring

pixels of p" are defined as the set of pixels contained within a square of width k centered on p:

Chapter 2: Averaging Filter and the Median Filter

46

Figure 2.5: Example of 3x3 Average Filtering Applied to a Pixel Matrix

With an averaging filter of width 3, to calculate the new value of the red pixel in the original

image on the left, we compute the average value of the pixels located within a 3×3 square centered

on that pixel. This gives the new value of the pixel in the transformed image (green pixel in the

image on the right):

42 + 111 + 154 + 23 + 123 + 176 + 63 + 145 + 134

9
= 108

This operation is repeated for all pixels in the image. The term "sliding window" refers to

the square over which the average of the pixels is calculated and which moves across the image.

Figure 2.6: Example of Denoising Gaussian Noise Using an Averaging Filter on a Pixel Matrix

MATLAB Implementation

clear, clc, close all

 %Load a medical image (for example, a brain scan image)

image = imread('C:\XX\aa.jpeg'); % Replace with your image

image_gray = im2gray(image); % Convert to grayscale if the image is in RGB format

Chapter 2: Averaging Filter and the Median Filter

47

% Add Gaussian noise to the image

noisy_image = imnoise(image_gray, 'gaussian', 0, 0.1); % Gaussian noise with a variance of 0.01

% Apply an averaging filter with a 5x5 kernel size

kernel_size = 5;
filtered_image = imfilter(noisy_image, fspecial('average', kernel_size));

% Display the images: original, noisy, and filtered

figure;

subplot(1, 3, 1);

imshow(image_gray);

title('Original Image ');

subplot(1, 3, 2);

imshow(noisy_image);

title ('Image with Gaussian Noise');

subplot(1, 3, 3);
imshow(filtered_image);

title ('IImage after Averaging Filter');

2.2 Median filter

The median filter, on the other hand, is a nonlinear filter that replaces each sample or pixel

with the median of the neighboring values. This type of filtering is particularly effective at

removing impulse noise, such as salt-and-pepper artifacts in imaging, or noise spikes in

physiological signals. Unlike the averaging filter, the median filter better preserves edges and sharp

transitions, which is crucial for diagnostic purposes in medical imaging where fine details are

important. In the domain of physiological signals, it is also useful for removing noise spikes while

maintaining the essential morphology of the signal.

Thus, the choice between an averaging filter and a median filter depends on the type of noise

present and the specific requirements of the analysis. In medical imaging and physiological signal

processing, these filters play a crucial role in enhancing data quality, thereby facilitating more

accurate and reliable diagnosis.

What Is Median Filtering?

Image noise can be briefly defined as random variations in some of the pixel values of an

image. We know filters are used to reduce the amount of noise present in an image, but how does

Median filtering work? Let’s use an example 3x3 matrix of pixel values:

[
22 24 27
31 98 29
27 22 23

]

Notice the center pixel: the clear outlier in this matrix. Outliers like this can produce what is

called salt-and-pepper noise, which produces an image that looks exactly what you might imagine:

Chapter 2: Averaging Filter and the Median Filter

48

Figure 2.7: Image Degraded by Salt-and-Pepper Noise

This image has a significant amount of salt-and-pepper noise, namely the black and white

pixels that appear out of place Median filtering is excellent at reducing this type of noise. The

filtering algorithm will scan the entire image, using a small matrix (like the 3x3 depicted above),

and recalculate the value of the center pixel by simply taking the median of all of the values inside

the matrix.

With the example above, the sorted values are [22, 22, 23, 24, 27, 27, 29, 31, 98], and median

of this set is 27. Let’s apply the filter and see how it looks:

Left: original image with noise. Right: Image with median filter applied.

Figure 2.8: Example of Denoising Salt-and-Pepper Noise Using median filter

Look at that! Basically all of the salt-and-pepper noise is gone! Now, let’s compare this to a

Gaussian filter and see if there is a difference:

Chapter 2: Averaging Filter and the Median Filter

49

Figure 2.9: Comparison of Median Filtering (Left) and Gaussian Filtering (Right)

As we can see, the Gaussian filter didn’t get rid of any of the salt-and-pepper noise! The neat

thing about a median filter is that the center pixel value will be replaced by a value that is present

in the surrounding pixels. This differs from Gaussian which will use the weighted average instead,

where outliers can heavily skew the average, resulting in almost no noise reduction in this case.

3 Chapter 3: Discrete Fourier Transform

(DFT) and Discrete Cosine Transform

(DCT)

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

51

3.1 Discrete Fourier Transform (DFT)

When we want to compute the Fourier transform of a function 𝑥(𝑡) using a computer, since

the computer only has a finite number of words of finite size, we are led to:

 Discretize the time-domain function,

 Truncate the time-domain function,

 Discretize the frequency-domain function.

f

f

Figure 3.1: Steps for Computing the Fourier Transform on a Computer: Discretization and

Truncation

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
+∞

−∞

𝑥∗(𝑡) = 𝑥(𝑡) ∑ 𝛿(𝑡 − 𝑛𝑇0)

+∞

𝑛=−∞

 = ∑ 𝑥(𝑛𝑇0)𝛿(𝑡 − 𝑛𝑇0)

+∞

𝑛=−∞

𝑋∗𝑇(𝑛𝑇0) 𝑋
∗
𝑓0(𝑘∆𝑓)

𝑇 = 𝑁𝑇0
t

∆𝑓 =
𝑓0
𝑁

𝑥(𝑡)

t

𝑋(𝑓)

𝑥∗(𝑡) 𝑋∗𝑓0(𝑓)

𝑇0 t 𝑓0 f

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

52

By using the Fourier Transform, we obtain:

𝑋∗(𝑓) = ∫ ∑ 𝑥(𝑛𝑇0)𝛿(𝑡 − 𝑛𝑇0)𝑒
−𝑗2𝜋𝑓𝑡𝑑𝑡

+∞

𝑛=−∞

+∞

−∞

 = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

∫ 𝛿(𝑡 − 𝑛𝑇0)𝑒
−𝑗2𝜋𝑓𝑡

+∞

−∞

𝑑𝑡

 = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

∫ 𝛿(𝑡 − 𝑛𝑇0)𝑒
−𝑗2𝜋𝑓𝑛𝑇0

+∞

−∞

𝑑𝑡

 = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑓𝑛𝑇0∫ 𝛿(𝑡 − 𝑛𝑇0)
+∞

−∞

𝑑𝑡

 = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑓𝑛𝑇0 where:∫ 𝛿(𝑡 − 𝑛𝑇0)
+∞

−∞

𝑑𝑡 = 1

𝑋∗(𝑓) = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑓𝑛𝑇0

On the other hand, we have:

𝑥∗(𝑡) = 𝑥(𝑡) ∑ 𝛿(𝑡 − 𝑛𝑇0)

+∞

𝑛=−∞

By using the Fourier Transform, we obtain:

𝑋∗(𝑓) = 𝑋(𝑓) ∗ 𝑇𝐹 [∑ 𝛿(𝑡 − 𝑛𝑇0)

+∞

𝑛=−∞

]

𝑇𝐹 [∑ 𝛿(𝑡 − 𝑛𝑇0)

+∞

𝑛=−∞

] = 𝑇𝐹 [∑ 𝐶𝑛𝑒
𝑗2𝜋𝑛𝑓0𝑡

+∞

𝑛=−∞

]

𝐶𝑛 =
1

𝑇0
∫ 𝛿(𝑡)𝑑𝑡 =

1

𝑇0
= 𝑓0

𝑇0
2

−
𝑇0
2

𝑇𝐹 [∑ 𝛿(𝑡 − 𝑛𝑇0)

+∞

𝑛=−∞

] = 𝑓0𝑇𝐹 [∑ 𝑒𝑗2𝜋𝑛𝑓0𝑡
+∞

𝑛=−∞

]

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

53

= 𝑓0∫ ∑ 𝑒𝑗2𝜋𝑛𝑓0𝑡 × 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

+∞

𝑛=−∞

+∞

−∞

= 𝑓0∫ ∑ 𝑒−𝑗2𝜋(𝑓−𝑛𝑓0)𝑡𝑑𝑡

+∞

𝑛=−∞

+∞

−∞

= 𝑓0 ∑ ∫ 𝑒−𝑗2𝜋(𝑓−𝑛𝑓0)𝑡𝑑𝑡
+∞

−∞

+∞

𝑛=−∞

= 𝑓0 ∑ 𝛿(𝑓 − 𝑛𝑓0)

+∞

𝑛=−∞

𝑋∗(𝑓) = 𝑋(𝑓) ∗ 𝑇𝐹 [∑ 𝛿(𝑛 − 𝑛𝑇0)

+∞

𝑛=−∞

]

𝑋∗(𝑓) = 𝑋(𝑓) ∗ 𝑓0 ∑ 𝛿(𝑓 − 𝑛𝑓0)

+∞

𝑛=−∞

 = 𝑓0∫ 𝑋(𝜏) ∑ 𝛿[(𝑓 − 𝑛𝑓0) − 𝜏]𝑑𝜏

+∞

𝑛=−∞

+∞

−∞

 = 𝑓0∫ 𝑋(𝜏) ∑ 𝛿[𝜏 − (𝑓 − 𝑛𝑓0)]𝑑𝜏

+∞

𝑛=−∞

+∞

−∞

= 𝑓0 ∑ 𝑋(𝑓 − 𝑛𝑓0)

+∞

𝑛=−∞

𝑋∗(𝑓) = 𝑓0 ∑ 𝑋(𝑓 − 𝑛𝑓0)

+∞

𝑛=−∞

𝑓 = 𝑘∆𝑓

𝑓0 = 𝑁∆𝑓 → ∆𝑓 =
𝑓0
𝑁
=

1

𝑁𝑇0

𝑋∗(𝑓) = ∑ 𝐶𝑛𝑒
−𝑗2𝜋𝑛𝑇0𝑓

+∞

𝑛=−∞

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

54

𝐶𝑛 =
1

𝑓0
∫ 𝑋∗(𝑓)𝑒𝑗2𝜋𝑛𝑇0𝑓𝑑𝑓

𝑓0
2

−
𝑓0
2

𝑋∗(𝑓) = ∑
1

𝑓0
∫ 𝑋∗(𝑓)𝑒𝑗2𝜋𝑛𝑓𝑇0𝑑𝑓𝑒−𝑗2𝜋𝑛𝑓𝑇0

𝑓0
2

−
𝑓0
2

+∞

𝑛=−∞

We also have:

𝑋∗(𝑓) = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑓𝑛𝑇0

By identification, we obtain:

𝑥(𝑛𝑇0) =
1

𝑓0
∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑛𝑓𝑇0𝑑𝑓

𝑓0
2

−
𝑓0
2

𝑋∗(𝑓) = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑓𝑛𝑇0

𝑋∗(𝑘∆𝑓) = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑘∆𝑓𝑛𝑇0

= ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋𝑘
𝑓0
𝑁
𝑛𝑇0

= ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋
𝑛𝑘
𝑁

𝑋(𝑘) = ∑ 𝑥(𝑛𝑇0)

+∞

𝑛=−∞

𝑒−𝑗2𝜋
𝑛𝑘
𝑁

𝑥(𝑛𝑇0) =
1

𝑓0
∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑛𝑓𝑇0𝑑𝑓

𝑓0
2

−
𝑓0
2

𝑥(𝑛) =
1

𝑓0
∫ 𝑋(𝑘∆𝑓)𝑒𝑗2𝜋𝑛𝑘∆𝑓0𝑑𝑓

𝑓0
2

−
𝑓0
2

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

55

𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘)

𝑁
2

𝑛=−
𝑁
2

𝑒𝑗2𝜋
1
𝑁
𝑛𝑘

𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘)

𝑁
2

𝑛=−
𝑁
2

𝑒𝑗2𝜋
𝑛𝑘
𝑁

In relation to the equations derived in the "DFT" section, it is helpful to introduce the

following substitution:

𝑊𝑁
𝑛𝑘 = 𝑒−𝑗

2𝜋𝑛𝑘
𝑁

The 𝑊𝑁
𝑛𝑘 element in this substitution is also called the "twiddle factor." With respect to this

substitution, we may rewrite the equation for computing the DFT and IDFT into these formats:

𝐷𝐹𝑇[𝑥(𝑛)] = 𝑋(𝑘) = ∑ 𝑥(𝑛).

𝑁−1

𝑛=0

𝑊𝑁
𝑛𝑘

𝐼𝐷𝐹𝑇[𝑋(𝑘)] = 𝑥(𝑛) =
1

𝑁
.∑ 𝑋(𝑘).

𝑁−1

𝑘=0

𝑊𝑁
−𝑛𝑘

3.1.1 Propriétés de la TFD

To enhance the efficiency of computing the DFT, certain properties of 𝑊𝑁
𝑛𝑘 are exploited.

These properties stem from the graphical representation of the twiddle factor as a rotational vector

for each nk value. They are described as follows:

3.1.1.1 Periodicity

The sequence 𝑋(𝑘) is a periodic sequence with a period of N.

𝑋(𝑘 + 𝑁) =
1

𝑁
.∑ 𝑥(𝑛). 𝑒−𝑗.

2.𝜋
𝑁
.(𝑘+𝑁).𝑛

𝑁−1

𝑛=0

1

𝑁
.∑ 𝑥(𝑛). 𝑒−𝑗.

2.𝜋
𝑁
.𝑘.𝑛 . 𝑒−𝑗.

2.𝜋
𝑁
.𝑁.𝑛 =

1

𝑁
.∑ 𝑥(𝑛). 𝑒−𝑗.

2.𝜋
𝑁
.𝑘.𝑛 = 𝑋(𝑘)

𝑁−1

𝑛=0

𝑁−1

𝑛=0

3.1.1.2 Symetry

𝑋(−𝑘) =
1

𝑁
.∑ 𝑥(𝑛). 𝑒−𝑗.

2.𝜋
𝑁
.(−𝑘).𝑛

𝑁−1

𝑛=0

= 𝑋(𝑘) =
1

𝑁
.∑ 𝑋𝑛 . (𝑒

−𝑗.
2𝜋
𝑁
.𝑘.𝑛)

∗

= 𝑋∗(𝑘)

𝑁−1

𝑛=0

𝑒−𝑗.2.𝜋.𝑛 = 1∀𝑛

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

56

where 𝑋∗(𝑘) denotes the complex conjugate of 𝑋(𝑘).

Example

Consider the sequence:

𝑥(𝑛)= [3, −1, 2, −2]

We will calculate the DFT using the matrix form for N=4.

DFT Matrix Form:

The DFT matrix 𝑊𝑁 of size N×N is given by:

𝑊𝑁
𝑛𝑘 = 𝑒−𝑗

2𝜋
𝑁
𝑘𝑛

For N=4, the matrix 𝑊4 is: 𝑒−𝑗𝜋

𝑊4 =

[

1 1 1 1

1 𝑒−𝑗
𝜋
2 𝑒−𝑗𝜋 𝑒−𝑗

3𝜋
2

1 𝑒−𝑗𝜋 𝑒−2𝑗𝜋 𝑒−3𝑗𝜋

1 𝑒−𝑗
3𝜋
2 𝑒−3𝑗𝜋 𝑒−𝑗

9𝜋
2]

Substituting values:

 𝑒−𝑗
𝜋
2 = −𝑗

𝑒−𝑗𝜋 = −1

 𝑒−𝑗
3𝜋
2 = 𝑗

𝑒−𝑗2𝜋 = 1

The DFT matrix becomes:

𝑊4 = [

1 1 1 1
1 − 𝑗 − 1 𝑗
1 − 1 1 1
1 𝑗 − 1 − 𝑗

]

Step 1: Input Sequence 𝑥(𝑛):

The input sequence is:

𝑥 = [

3
−1
2
−2

]

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

57

Step 2: Perform Matrix Multiplication

Now multiply the DFT matrix 𝑊4 by the input sequence 𝑥:

𝑋 = 𝑊4𝑥 = [

1 1 1 1
1 − 𝑗 − 1 𝑗
1 − 1 1 1
1 𝑗 − 1 − 𝑗

] × [

3
−1
2
−2

]

Perform the multiplication row by row:

𝑋(0)=1×3+1×(−1)+1×2+1×(−2)=3−1+2−2=2

𝑋(1)=1×3+(−j)×(−1)+(−1)×2+j×(−2) =3+j−2−2j=1−j

𝑋(2)=1×3+(−1)×(−1)+1×2+(−1)×(−2)=3+1+2+2=8

𝑋(3)=1×3+j× (−1) +(−1) ×2+(−j)×(−2)=3−j−2+2j= 1 + j

The DFT of the sequence 𝑥(𝑛)= [3, −1, 2, −2] is: 𝑋(𝑘)= [2, 1−j, 8, 1+j]

In this example, we computed the DFT of the sequence 𝑥(𝑛)= [3, −1, 2, −2] using matrix

multiplication. The result 𝑋(𝑘)=[2,1−j,8,1+j] provides the frequency domain representation of the

input sequence, showing how both positive and negative values contribute to the DFT. The result

contains both real and imaginary components, representing the magnitude and phase of the

frequency components.

3.1.2 Fast Fourier Transform (FFT)

The Fast Fourier Transform is an efficient algorithm for computing the Discrete Fourier

Transform (DFT) and its inverse. However, the direct computation of the DFT has a high

computational cost, requiring O (𝑁2) operations for a signal of length N, making it impractical for

large datasets. The FFT significantly reduces this computational complexity to O (𝑁𝑙𝑜𝑔𝑁) by

taking advantage of the symmetry and periodicity properties of the twiddle factors (the complex

exponential terms in the DFT). This allows for faster and more efficient processing, especially for

large data sets.

The most commonly used FFT algorithm is the Cooley-Tukey algorithm, which recursively

breaks down a DFT of size NNN into smaller DFTs, usually by splitting the signal into even and

odd indexed components. This divide-and-conquer approach enables faster calculations, making

FFT crucial in various real-time applications like audio processing, image compression, radar, and

more.

FFT revolutionized the field of digital signal processing by enabling practical and efficient

analysis of signals in both time and frequency domains.

3.1.2.1 Radix-2 decimation in time FFT description

The basic idea of the FFT is to decompose the DFT of a time-domain sequence of length N

into successively smaller DFTs whose calculations require fewer arithmetic operations. This is

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

58

known as a divide-and-conquer strategy, made possible using the properties described in the

previous section. The decomposition into shorter DFTs may be performed by splitting an N-point

input data sequence x(n) into two N/2-point data sequences a(m) and b(m), corresponding to the

even-numbered and odd-numbered samples of x(n), respectively, that is:

 a(m)=x(2m), that is, samples of x(n) for n = 2m

 b(m)=x(2m+1), that is, samples of x(n) for n = 2m + 1

where m is an integer in the range of 0 ≤ m <N/2.

The DFT of 𝑥(𝑛) is given by:

𝑋(𝑘) = ∑ 𝑥(𝑛)

𝑁−1

𝑛=0

. 𝑊𝑁
𝑛𝑘

We split this sum into even and odd indices:

𝑋(𝑘) = ∑ 𝑥(2𝑚)

𝑁/2−1

𝑛=0

. 𝑊𝑁
2𝑚𝑘 + ∑ 𝑥(2𝑚 + 1)

𝑁/2−1

𝑛=0

.𝑊𝑁
(2𝑚+1)𝑘

 = ∑ x(2m)

N/2−1

n=0

. WN
2mk +WN

k ∑ x(2m+ 1).WN
2mk

N/2−1

n=0

 = ∑ a(m)

N
2
−1

n=0

.WN
2

mk +WN
k∑b(m).WN

2

mk

N
2
−1

n=0

 = 𝐴(𝑘)

0 ≤ k ≤ N

These two summations represent the N/2-point DFTs of the sequences a(m) and b(m),

respectively.

Thus, DFT[a(m)] = A(k) for even-numbered samples, and DFT[b(m)] = B(k) for odd-

numbered samples.

Thanks to the periodicity property of the DFT, the outputs for N/2 ≤ k < N from a DFT of

length N/2 are identical to the outputs for 0 ≤ k <N/2.

That is, A(k+N/2) = A(k) and B(k + N/2) = B(k) for 0≤ k <N/2.

In addition, the factor 𝑊𝑁
𝑘+𝑁/2

= −𝑊𝑁
𝐾 thanks to the symmetry property.

 Thus, the whole DFT can be calculated as follows:

𝑋(𝑘) = 𝐴(𝑘) +𝑊𝑁
𝑘𝐵(𝑘)

𝑋(𝑘 + 𝑁/2) = 𝐴(𝑘) −𝑊𝑁
𝑘𝐵(𝑘)

0 ≤ k ≤ N/2

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

59

This result, expressing the DFT of length recursively in terms of two DFTs of size N/2, is the

core of the radix-2 DIT FFT. Note, that final outputs of X(k) are obtained by a +/- combination

of A(k) and B(k) W, which is simply a size 2 DFT. These combinations can be demonstrated by

a simply-oriented graph, sometimes called "butterfly" in this context (see Figure 3.2).

Figure 3.2: Basic butterfly computation in the DIT FFT algorithm

The procedure of computing the discrete series of an N-point DFT into two N/2-point DFT

s may be adopted for computing the series of N/2-point DFTs from items of N/4-point DFT s. For

this purpose, each N/2-point sequence should be divided into two sub-sequences of even and odd

items, and computing their DFTs consecutively. The decimation of the data sequence can be

repeated again and again until the resulting sequence is reduced to one basic DFT.

For illustrative purposes, Figure 3.3 depicts the computation of an N= 8-point DFT. We

observe that the computation is performed in three stages (3 = log28), beginning with the

computations of four 2-point DFTs, then two 4-point DFTs, and finally, one 8-point DFT.

Generally, for an N-point FFT, the FFT algorithm decomposes the DFT into log2N stages, each of

which consists of N/2 butterfly computations. The combination of the smaller DFTs to form the

larger DFT for N= 8 is illustrated in Figure 3.4.

Figure 3.3: Decomposition of an 8-point DFT

FFT implementation

The procedure of computing the discrete series of an N-point DFT into two N/2-point DFTs may be
adopted for computing the series of N/2-point DFTs from items of N/4-point DFTs. For this purpose, each

N/2-point sequence should be divided into two sub-sequences of even and odd items, and computing their

DFTs consecutively. The decimation of the data sequence can be repeated again and again until the

resulting sequence is reduced to one basic DFT.

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

stage 1

stage 2

stage 3

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

Figure 2. Decomposition of an 8-point DFT

For illustrative purposes, Figure 2 depicts the computation of an N = 8-point DFT. We observe that

the computation is performed in three stages (3 = log28), beginning with the computations of four 2-point

DFTs, then two 4-point DFTs, and finally, one 8-point DFT. Generally, for an N-point FFT, the FFT

algorithm decomposes the DFT into log2N stages, each of which consists of N/2 butterfly

computations.The combination of the smaller DFTs to form the larger DFT for N = 8 is illustrated

in Figure 3.

2-point

DFT

2-point

DFT

Combine
2-point

DFT’s

2-point

DFT

Combine

4-point
DFT’s

Combine

2-point
DFT’s

2-point

DFT

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

60

 Figure 3.4: 8-point radix-2 DIT FFT algorithm data flow

Each dot represents a complex addition and each arrow represents a complex multiplication, as

shown in Figure 3.4 The 𝑊𝑁
𝑘 factors in Figure 3.4 may be presented as a power of two (𝑊2) at the

first stage, as a power of four (𝑊4) at the second stage, as a power of eight (𝑊8) at the third stage,

and so on. It is also possible to represent it uniformly as a power of N (𝑊𝑁), where Nis the size of

the input sequence x(n).

3.1.2.2 Radix-2 decimation in time FFT requirements

For effective and optimal decomposition of the input data sequence into even and odd sub-

sequences, it is good to have the power-of-two input data samples (.... 64, 128, and so on).

The first step before computing the radix-2 FFT is re-ordering of the input data sequence (see also

the left side of Figure 3.4 and Figure 3.5). This means that this algorithm needs a bit-reversed data

ordering: that is, the MSBs become LSBs, and vice versa. Table 3.1 shows an example of a bit-

reversal with an 8-point input sequence.

 Table 3.1: Bit reversal with an 8-point input sequence

Decimal number 0 1 2 3 4 5 6 7

Binary equivalent 000 001 010 011 100 101 110 111

Binary equivalent 000 100 010 110 001 101 011 111

Decimal equivalent 0 4 2 6 1 5 3 7

x(n)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

k=0 k=0,1 k=0,1,2,3

W8
4k=W2

k W8
2k=W4

k W8
k

Figure 3. 8-point radix-2 DIT FFT algorithm data flow

X(k)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

Each dot represents a complex addition and each arrow represents a complex multiplication, as shown in

Figure 3. The WN
k factors in Figure 3 may be presented as a power of two (W2) at the first stage, as a power

of four (W4) at the second stage, as a power of eight (W8) at the third stage, and so on. It is also possible
to represent it uniformly as a power of N (WN), where N is the size of the input sequence x(n). The context
between both expressions is shown in Equation 8.

3.1 The radix-2 decimation in time FFT requirements

For effective and optimal decomposition of the input data sequence into even and odd sub-sequences, it is

good to have the power-of-two input data samples (..., 64, 128, and so on).

The first step before computing the radix-2 FFT is re-ordering of the input data sequence (see also the left

side of Figure 2 and Figure 3). This means that this algorithm needs a bit-reversed data ordering; that is,
the MSBs become LSBs, and vice versa. Table 1 shows an example of a bit-reversal with an 8-point input

sequence.

Table 1. Bit reversal with an 8-point input sequence

Decimal number 0 1 2 3 4 5 6 7

Binary equivalent 000 001 010 011 100 101 110 111

Bit reversed binary 000 100 010 110 001 101 011 111

Decimal equivalent 0 4 2 6 1 5 3 7

W8
0

-1

W8
0

W8
0

W8

2

-1

-1 -1

W8
0

W8
1

W8
2

W8
3

-1

W8
0

-1 -1

W8
0

W8

2

-1 -1

W8
0

-1 -1 -1

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

61

3.1.2.3 Fast Fourier Transform (FFT) in ECG Signal Analysis:

FFT is widely used to analyze Electrocardiogram (ECG) signals, which measure heart

activity. By converting the ECG signal from the time domain to the frequency domain, FFT helps

reveal important frequency components related to heart function.

Key Applications:

 Heart Rate Variability (HRV): FFT breaks down RR intervals into frequency bands (low

and high), indicating autonomic nervous system activity.

 Arrhythmia Detection: Abnormal heart rhythms, like atrial fibrillation, show distinctive

high-frequency components.

 Myocardial Ischemia: Shifts in specific frequency components can indicate reduced blood

flow to the heart.

FFT enhances the ability to diagnose heart conditions by making hidden patterns in ECG

data visible.

3.1.2.4 Application of FFT in ECG Signal Analysis using MATLAB

Below is a step-by-step guide to applying FFT to an ECG signal in MATLAB. This example will

show how to load an ECG signal, preprocess it, apply FFT, and visualize the frequency spectrum.

A. Load or Simulate ECG Signal

You can either load an actual ECG dataset or simulate one using built-in MATLAB functions.

MATLAB Implementation

clear, clc, close all

% Simulate an ECG signal (you can replace this with actual ECG data)

Fs = 500; % Sampling frequency (500 Hz)

t = 0:1/Fs:5-1/Fs; % Time vector for 5 seconds

ecgSignal = ecg(500*5); % Generate ECG signal

Plot the ECG signal in time domain figure;

plot(t, ecgSignal);

title('ECG Signal in Time Domain');

 xlabel('Time (s)');
ylabel('Amplitude');

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

62

Figure 3.3: ECG signal in time domain

B. Preprocessing the ECG Signal

In practice, you would remove noise such as baseline wander or powerline interference

using filters. For simplicity, we will skip this step here.

C. Apply FFT to ECG Signal

MATLAB Implementation

FFT will transform the ECG signal from the time domain to the frequency domain.

clear, clc, close all

N = length(ecgSignal); % Number of points in the ECG signal

ecgFFT = fft(ecgSignal); % Compute FFT of the ECG signal

% Compute frequency axis

f = (0:N-1)*(Fs/N); % Frequency vector

P2 = abs(ecgFFT/N); % Two-sided amplitude spectrum

P1 = P2(1:N/2+1); % Single-sided amplitude spectrum
P1(2:end-1) = 2*P1(2:end-1); % Correcting the amplitude

% Plot the FFT result (frequency spectrum)

figure;

plot(f(1:N/2+1), P1);

title('Single-Sided Amplitude Spectrum of ECG Signal');

xlabel('Frequency (Hz)');

ylabel('|P1(f)|');

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

63

Figure 3.4: Single-sided amplitude spectrum of ECG signal

Interpretation

 The x-axis represents the frequency in Hz.

 The y-axis shows the amplitude of each frequency component.

 You’ll observe a dominant peak corresponding to the heart rate (in Hz), and other peaks

may represent noise or artifacts.

3.2 Discrete Cosine Transform (DCT)

The DCT is a Fourier-related transform similar to the Discrete Fourier Transform (DFT), but

it uses only real numbers (cosine functions) instead of complex exponentials (sines and cosines).

The main purpose of the DCT is to express a finite sequence of data points in terms of a sum of

cosine functions oscillating at different frequencies.

For an input signal (or image), the DCT transforms it into a sequence of coefficients that

represent the signal’s energy distribution over various frequencies. The basic idea is that most of

the signal’s information is concentrated in the low-frequency components, making it easier to

compress.

3.2.1 Mathematical Formulation

The DCT transforms a sequence of real numbers 𝑥(𝑛), where n = 0,1,2,… , N − 1, into

another sequence of real numbers 𝑋(𝑘), where k = 0,1,2, … ,N − 1, which represent the frequency

coefficients.

3.2.2 1D DCT Formula:

The most common form is the DCT Type-II, which is typically what is referred to as "the

DCT" in most applications. Its formula is:

𝑋(𝑘) = 𝛼(𝑘)∑ 𝑥(𝑛)𝑁−1
𝑛=0 𝑐𝑜𝑠 (

𝜋(2𝑛+1)𝑘

2𝑁
), k=0, 1…, N-1

Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)

64

Where:

 𝑥(𝑛) is the input sequence.

 𝑋(𝑘) is the DCT coefficient for frequency k.

 N is the length of the sequence.

 α(k) is a normalization factor:

𝛼(𝑘) =

{

√
1

𝑁
 𝑖𝑓 𝑘 = 0

√
2

𝑁
 𝑖𝑓 𝑘 ≠ 0

This normalization ensures that the DCT is orthonormal, which is crucial for certain properties

such as energy preservation.

 Example

Let’s go through a simple example of calculating the DCT of a 4-point sequence.

Input Sequence:

Suppose the input sequence is 𝑥=[1,2,3,4].

𝑋(𝑘) = 𝛼(𝑘)∑ 𝑥(𝑛)𝑁−1
𝑛=0 𝑐𝑜𝑠 (

𝜋(2𝑛+1)𝑘

2𝑁
), k=0, 1…, N-1

With N=4, the DCT coefficients 𝑋(𝑘) are calculated for k=0,1,2,3

For 𝑘 = 0: 𝑋(0) = 𝛼(0)∑ 𝑥𝑁−1
𝑛=0 [𝑛]𝑐𝑜𝑠 (

𝜋(2𝑛+1)0

8
) =

1

2
(1 + 2 + 3 + 4) = 5

For 𝑘 = 1: 𝑋(1) = 𝛼(0)∑ 𝑥𝑁−1
𝑛=0 [𝑛]𝑐𝑜𝑠 (

𝜋(2𝑛+1)1

8
)

Substituting values, this gives 𝑋(1)≈−1.148.

Similarly, we calculate 𝑋(2) and 𝑋(3), leading to the full DCT output

4 Chapter 4: Concepts of Characteristics

and Classification of Physiological

Signals

Chapter 4: Concepts of Characteristics and Classification of Physiological Signals

65

4.1 Characteristics of Physiological Signals

Physiological signals are inherently complex due to their non-stationary nature and high

variability. These signals vary based on the organ or system they originate from (e.g., heart, brain,

muscles), the physiological state during the recording, and the type of signal being measured.

Understanding their characteristics is essential for accurate interpretation and analysis.

4.1.1 Types of Physiological Signals

4.1.1.1 Electrocardiogram (ECG)

Measures the electrical activity of the heart by recording voltage changes generated by the

depolarization and repolarization of cardiac tissue. ECG signals are used to diagnose a variety of

heart conditions, such as arrhythmias, ischemia, and myocardial infarction. These signals typically

range between 0.05–150 Hz, and their characteristic components include the P-wave, QRS

complex, and T-wave, which correspond to different phases of the cardiac cycle.

4.1.1.2 Electroencephalogram (EEG)

Captures the brain’s electrical activity by recording the voltage fluctuations produced by the

collective firing of neurons. EEG signals are used to study brain function and diagnose

neurological disorders such as epilepsy, sleep disorders, and brain injuries. They operate in lower

frequency bands (0.1–100 Hz) and are often classified into different frequency ranges: delta, theta,

alpha, beta, and gamma waves, each associated with specific brain states.

4.1.1.3 Electromyogram (EMG)

Monitors the electrical activity generated by skeletal muscles during contraction. EMG

signals help in diagnosing neuromuscular diseases and assessing muscle function. The amplitude

of EMG signals is generally higher compared to EEG and ECG, and they are more susceptible to

artifacts due to external movements or noise.

4.2 Characteristics of Physiological Signals

4.2.1 Non-stationary nature

Physiological signals often exhibit non-stationary behavior, meaning their statistical

properties, such as mean and variance, change over time. For instance, an ECG waveform might

vary due to changes in heart rate, while EEG patterns can shift depending on the subject's level of

alertness.

4.2.2 Periodicity

Some physiological signals, such as ECG, display repetitive, cyclical patterns corresponding

to biological rhythms (e.g., heartbeats), while others, like EEG, tend to have more irregular

patterns with less periodicity. Understanding periodicity is critical for identifying and classifying

abnormal patterns, such as arrhythmic heartbeats.

4.2.3 Amplitude and frequency ranges

The amplitude and frequency of physiological signals vary significantly. For example, ECG

signals are typically low-frequency (0.05–150 Hz) and have relatively higher amplitude compared

to EEG signals, which fall in the range of 0.1–100 Hz and have lower amplitude.

Chapter 4: Concepts of Characteristics and Classification of Physiological Signals

66

4.2.4 Noise and artifacts

Physiological signals are often contaminated by noise from external sources (e.g., power-

line interference) or internal physiological processes (e.g., respiration in ECG). These artifacts can

obscure important features and must be filtered out during preprocessing.

4.3 Feature Extraction Methods

Feature extraction is the process of transforming raw physiological signal data into a

meaningful set of characteristics that reflect essential information for further analysis or

classification. Different approaches are employed depending on whether the analysis is conducted

in the time or frequency domain.

4.3.1 Time-Domain Feature Extraction

Time-domain features are derived directly from the signal without transforming it into

another domain. These features are particularly useful for capturing the basic statistical properties

of physiological signals.

4.3.2 Mean and variance

The mean provides the average amplitude of a signal, while variance indicates the degree of

variability over time. These two measures are commonly used to describe the overall behavior of

a signal, such as changes in EMG activity during muscle contractions.

4.3.3 Root Mean Square (RMS)

RMS is a standard measure of signal magnitude and is especially useful in EMG analysis,

where it reflects the intensity of muscle activity. RMS is calculated by taking the square root of

the mean of the squared signal values over a given time window.

𝑅𝑀𝑆 = √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

where 𝑥𝑖 is the signal value at time 𝑖, and N is the total number of samples.

4.3.4 Zero-crossing rate

This feature measures the rate at which a signal crosses the zero-amplitude line. It is

especially useful for EMG signals to classify different phases of muscle activity, such as

distinguishing between active muscle contraction and relaxation periods.

4.4 Frequency-Domain Feature Extraction

Frequency-domain analysis involves transforming the signal into its frequency components,

which is particularly important for analyzing physiological signals like EEG, where different

frequency bands are associated with specific brain states.

4.4.1 Discrete Fourier Transform (DFT) and Short-Time Fourier Transform (STFT)

The DFT decomposes a signal into its constituent frequencies, offering insight into its

frequency content. STFT extends this by providing time-localized frequency information, making

it useful for non-stationary signals such as EEG.

Chapter 4: Concepts of Characteristics and Classification of Physiological Signals

67

4.4.2 Power Spectral Density (PSD)

PSD describes how the power of a signal is distributed across different frequencies. This

measure is particularly important in EEG analysis, where the power within specific frequency

bands (e.g., delta, theta, alpha, beta) can provide diagnostic information.

4.4.3 Bandpower

Bandpower refers to the total power of a signal within a specific frequency band. For

instance, in EEG analysis, the alpha band (8–13 Hz) is associated with relaxation, and an increase

in power in this band may indicate a relaxed mental state.

4.5 Wavelet Transform

The Wavelet Transform (WT) is a powerful tool for analyzing non-stationary signals like

ECG and EMG. Unlike the Fourier Transform, which only provides frequency information, WT

offers both time and frequency localization, making it highly effective for signals with transient

features.

4.5.1 Wavelet coefficients

By decomposing a signal into wavelet coefficients at different scales, time-localized

frequency information can be extracted, allowing for a detailed analysis of signal dynamics over

time.

4.6 Non-linear Feature Extraction

For more complex physiological signals like EEG, non-linear features such as entropy,

fractal dimensions, and Lyapunov exponents are often used. These features capture the chaotic or

irregular nature of signals, providing additional insights into the underlying physiological

processes.

4.6.1 Detrended Fluctuation Analysis (DFA)

DFA is a specialized technique for analyzing signals that demonstrate self-similarity and for

identifying long-term correlations in non-stationary time series. Its straightforward approach and

high effectiveness have led to its widespread use in diverse fields such as DNA sequencing, long-

term weather data, cloud structure studies, geology, ethnology, economic time series, and solid-

state physics. Additionally, it is applied in heart rate variability analysis and EEG signals. Because

of the non-linear nature of EEG signals, Fractal Dimension analysis can be utilized to assess the

irregularities present in brain activity.

4.7 Classification Approaches

After feature extraction, classifiers are used to distinguish between different physiological

states or conditions (e.g., normal vs. abnormal heartbeats). The choice of classifier depends on the

complexity and dimensionality of the feature space.

4.7.1 Types of Classifiers

4.7.1.1 Support Vector Machine (SVM)

SVM constructs a hyperplane that maximizes the margin between different classes in the

feature space. It is highly effective for handling high-dimensional data and is widely used in

Chapter 4: Concepts of Characteristics and Classification of Physiological Signals

68

physiological signal classification, such as distinguishing between normal and arrhythmic ECG

signals.

4.7.1.2 Artificial Neural Networks (ANN)

ANNs consist of interconnected layers of artificial neurons and are capable of learning

complex patterns in the data. They are widely used in physiological signal analysis, especially for

detecting patterns in noisy and non-linear signals like EEG.

4.7.1.3 K-Nearest Neighbors (KNN)

KNN is a simple yet effective algorithm that classifies data points based on the majority class

of their nearest neighbors in the feature space. It is easy to implement and works well for smaller

datasets but may struggle with large, high-dimensional data.

4.7.1.4 Random Forest

Random Forest is an ensemble learning method that constructs multiple decision trees and

aggregates their predictions. It is robust to noise and performs well on complex datasets with high

variability, making it suitable for physiological signals like EMG and EEG.

4.7.2 Training and Testing

4.7.2.1 Training

The classifier is trained using a labeled dataset, where the correct class of each signal is

known. The goal is for the classifier to learn the relationship between features and their

corresponding labels.

4.7.2.2 Testing

The classifier’s performance is evaluated on a separate test set that was not used during

training. Performance metrics such as accuracy, sensitivity, specificity, and the area under the

receiver operating characteristic (ROC) curve are commonly used.

4.8 Performance Evaluation

Evaluating the performance of classifiers in physiological signal analysis is essential for

determining how accurately they can differentiate between various conditions like normal and

abnormal heartbeats. This evaluation uses a combination of key metrics and methods, which

include accuracy, sensitivity, specificity, cross-validation, and ROC curves.

4.8.1 Accuracy, Sensitivity, and Specificity

4.8.1.1 Accuracy

The ratio of correctly predicted cases (both positive and negative) to the total number of

cases.

𝐴𝑐𝑐𝑢𝑟𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 TP (True Positives): Correctly classified positive cases (e.g., correctly detecting abnormal

heartbeats).

 TN (True Negatives): Correctly classified negative cases (e.g., correctly detecting

normal heartbeats).

Chapter 4: Concepts of Characteristics and Classification of Physiological Signals

69

 FP (False Positives): Incorrectly classified cases as positive.

 FN (False Negatives): Incorrectly classified cases as negative.

Provides an overall measure of the model’s performance but may not be sufficient in imbalanced

datasets, where normal signals far outnumber abnormal ones.

4.8.1.2 Sensitivity (Recall)

Measures the proportion of actual positives that are correctly identified (e.g., abnormal

conditions).

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Critical in physiological analysis because missing positive cases (e.g., failing to detect a heart

condition) can have severe consequences. High sensitivity ensures that abnormal conditions are

detected, minimizing false negatives.

4.8.1.3 Specificity

Measures the proportion of actual negatives that are correctly identified (e.g., normal

conditions).

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Important to avoid false alarms in physiological analysis (e.g., diagnosing a healthy individual

with a condition), which could lead to unnecessary treatments or interventions.

4.8.2 Cross-Validation

Cross-validation is a technique used to assess how well a classifier generalizes to new data

by splitting the dataset into training and testing subsets.

4.8.2.1 k-Fold Cross-Validation

The data is divided into k subsets (folds). The classifier is trained on k-1 folds and tested on

the remaining fold. This is repeated k times, and the results are averaged. It provides a more

accurate estimate of performance, reducing biases from any particular data split. For smaller

datasets, it maximizes the use of available data.

4.8.2.2 Leave-One-Out Cross-Validation (LOOCV)

A special case where the model is trained on all but one sample, and tested on the remaining

one, repeated for each sample. It offers an unbiased performance estimate but can be

computationally expensive for large datasets.

4.8.2.3 Stratified Cross-Validation

Ensures that each fold maintains the same class distribution as the original dataset,

particularly important when working with imbalanced data. It ensures that both normal and

abnormal cases are well-represented in each fold.

Chapter 4: Concepts of Characteristics and Classification of Physiological Signals

70

4.8.3 ROC Curves and AUC

4.8.3.1 ROC Curve (Receiver Operating Characteristic)

A plot of the true positive rate (sensitivity) against the false positive rate (1-specificity)

across different classification thresholds. It shows the trade-off between sensitivity and specificity.

The shape of the ROC curve helps visualize how well a classifier can distinguish between different

classes (e.g., normal vs. abnormal signals).

4.8.3.2 AUC (Area Under the Curve)

A single scalar value that summarizes the ROC curve performance.

 AUC = 1.0: Perfect classification.

 AUC = 0.5: No better than random guessing.

Particularly useful in datasets where classes are imbalanced. A higher AUC indicates better

discriminatory ability of the classifier, even when one class is more common than the other.

4.9 Application for a Physiological Signal: ECG Analysis

Feature extraction and classification methods are frequently applied in real-world scenarios,

such as detecting arrhythmias in ECG signals.

4.9.1 Feature Extraction in ECG

4.9.1.1 R-peak detection

R-peaks are the highest points in the ECG waveform and correspond to individual heartbeats.

Detecting these peaks is essential for analyzing heart rate and heart rate variability (HRV).

4.9.1.2 Heart Rate Variability (HRV)

HRV measures the time variation between consecutive R-peaks and is used to assess

autonomic nervous system activity. Reduced HRV is associated with conditions like arrhythmia

and heart failure.

4.9.1.3 Waveform morphology

The shape, amplitude, and duration of the QRS complex in the ECG signal are analyzed to

diagnose heart conditions. For example, a prolonged QRS complex may indicate bundle branch

block or ventricular hypertrophy.

4.9.2 Classifier Design for Arrhythmia Detection

Extracted ECG features, such as R-peak intervals and QRS morphology, are used to train

classifiers (e.g., SVM or ANN) to distinguish between normal and abnormal heartbeats. The

classifier's performance is assessed by its ability to detect arrhythmias, with metrics such as

accuracy, precision, and recall being used to evaluate its effectiveness.

4.9.2.1 Real-Time Application

In clinical settings, real-time ECG monitoring continuously extracts features and applies

trained classifiers to detect abnormal heart conditions, enabling timely medical interventions. For

example, wearable devices equipped with ECG sensors can alert patients or healthcare providers

when arrhythmias are detected, leading to early diagnosis and treatment.

Chapter 4: Concepts of Characteristics and Classification of Physiological Signals

71

4.10 Application of SVM for Auditory Evoked Potentials (AEP) Classification Using

MATLAB

In this example, we developed an SVM classifier model using Radial Basis Function (RBF)

kernel functions to distinguish between the normal hearing group and the hearing-impaired group,

based on Fractal Dimension (FD) features extracted from Auditory Evoked Potentials (AEP)

signals recorded from the participants. These signals, detected in the EEG auditory cortex area, are

small electrical responses to sound stimuli, generated by the auditory pathway from the inner ear

to the cerebral cortex. The AEP signals were recorded via electrodes attached to the scalp,

measuring the bioelectric function of the auditory system.

Twenty participants were involved in the experiment, divided equally into a normal hearing

group and a hearing-impaired group. The AEP signals were stimulated at four distinct frequencies

in both the right and left ears at a fixed sound intensity level of 20 dBHL.

MATLAB Implementation

clear, clc, close all

load('C:\XX\svm_fractal_DFA_R500'); % Fractal Dimension values of all subjects (xdata) at

a frequency of 500 Hz for the right ear

g1=zeros(50,1);

g2=ones(50,1);

group=[g1;g2];

P=0.3;

[TRAIN,TEST] = crossvalind('HoldOut',group,P);

TrainingSample=xdata(TRAIN,:);

TrainingLabel=group(TRAIN,1);

TestingSample=xdata(TEST,:);

TestingLabel=group(TEST,1);

numfolds=5;

Indices = crossvalind('Kfold', TrainingLabel, numfolds);

%% Training SVM_RBF

for i=1:numfolds

 TestingFoldSample=TrainingSample(Indices==i,:);

 TrainingFoldSample=TrainingSample(Indices~=i,:);

 TraingFoldLabeL=TrainingLabel(Indices~=i,:);

 Md = fitcsvm(TrainingFoldSample,TraingFoldLabeL,'KernelFunction', 'RBF');

 OutLabel_Train(Indices==i,1)=predict(Md,TestingFoldSample);

end

 accfol=sum(grp2idx(OutLabel_Train)==grp2idx(TrainingLabel))/length(TrainingLabel);

%% Testing Grid_SVM_RBF

 OutLabel_Test=predict(Md,TestingSample);
acc_test_svm_RBF=sum(grp2idx(OutLabel_Test)==grp2idx(TestingLabel))/length((TestingLabel))

Chapter 4: Concepts of Characteristics and Classification of Physiological Signals

72

The classification rates for the RBF kernel SVM classifier are provided in Table 4.1.

Table 4.1: Classification Performance of SVM Model at Different Frequencies for the Right and Left Ear

Fréquence (Hz) Ear Accuracy (%) Sensitivity (%) specificity (%)

500 R 96.67 93.33 100

1000 R 90.0 93.33 86.67

2000 R 83.33 86.67 80.0

4000 R 80.0 93.33 66.67

500 L 83.33 73.33 93.33

1000 L 86.67 73.33 100

2000 L 83.33 86.67 80.0

4000 L 90.0 86.67 93.33

The model achieves its best performance at 500 Hz for the right ear, with the highest

accuracy (96.67%) and perfect specificity (100%). The 4000 Hz left ear also performs well,

showing high accuracy (90.0%), sensitivity (86.67%), and specificity (93.33%). However, the right

ear at 4000 Hz has the lowest specificity (66.67%), indicating difficulties in classifying normal

hearing individuals, and the left ear exhibits lower sensitivity (73.33%) at 500 Hz and 1000 Hz,

suggesting challenges in detecting hearing impairment at these frequencies. Overall, the right ear

excels at lower frequencies, while the left ear performs better at higher frequencies.

4.11 Application of VGG19 and SVM for MRI Brain Tumor Classification Using

MATLAB

In this example, we developed a hybrid approach by combining the VGG19 and SVM

models to classify MRI images into two categories: tumor class and non-tumor class. The dataset

used in this study consists of 2,000 MRI images of the human brain, equally divided between these

two classes. VGG19, a pre-trained convolutional neural network (CNN) with 19 layers trained on

a large dataset (e.g., ImageNet), was employed to extract deep features from the MRI images.

These features were then used to construct a feature vector, which was fed into an SVM classifier.

The SVM was trained using a linear kernel function to classify the input MRI images into normal

(non-tumor) and abnormal (tumor) categories.

MATLAB Implementation

clear,clc,close all

net=vgg19;

myFolder=fullfile('C:\XX\'); % Path to the file containing Brain Tumor Dataset

categories={'no','yes'}; %Categories for Brain Tumor Classification

imds=imageDatastore(fullfile(myFolder,categories),'LabelSource','foldernames');

[imdsTrain,imdsValidation]=splitEachLabel(imds,0.7,'randomized');

imsize=net.Layers(1).InputSize;

normTrainingSet=augmentedImageDatastore(imsize,imdsTrain,"ColorPreprocessing","gray2rgb"

);

Chapter 4: Concepts of Characteristics and Classification of Physiological Signals

73

normTestingSet=augmentedImageDatastore(imsize,imdsValidation,"ColorPreprocessing","gray2

rgb");

fcFeature='fc8';

trainingFeatures=activations(net,normTrainingSet,fcFeature,'MiniBatchSize',32,'OutputAs','colu

mns');

tesingValidationFeatures=activations(net,normTestingSet,fcFeature,'MiniBatchSize',32,'OutputA

s','columns');

trainingLabels=imdsTrain.Labels;

testningLabels=imdsValidation.Labels;

t = templateSVM('KernelFunction','linear');

classifier_vgg=fitcecoc(trainingFeatures,trainingLabels,"Learners",t,ObservationsIn="columns")

;

[label_vgg_Test,Pred_vgg_core]=predict(classifier_vgg,tesingValidationFeatures,"observationsI

n","columns");

acc_vgg_Test=sum((label_vgg_Test==testningLabels)/numel(testningLabels))

cm_VGG = confusionchart(testningLabels,label_validation_vgg)

figure %Confusion Matrix of the VGG19 Model for Binary Brain MRI Classification

rocObj1 = rocmetrics(testningLabels,Pred_vgg_core,categories);

plot(rocObj1,ClassNames=categories,ShowModelOperatingPoint=false); %ROC Curve for the

VGG19 Model

Figure 4.1 presents the confusion matrix for the VGG19 model used in the classification task.

Figure 4.1: Confusion Matrix of the VGG19 Model for Binary Brain MRI Classification

The confusion matrix indicates that the classification model performs exceptionally well,

with 291 true negatives (correctly predicted "no") and 288 true positives (correctly predicted

"yes"). Misclassifications are minimal, with only 9 false positives (incorrectly predicted "yes") and

Chapter 4: Concepts of Characteristics and Classification of Physiological Signals

74

12 false negatives (incorrectly predicted "no"). Overall, the model achieves high accuracy

(96.50%) and demonstrates strong precision and recall, effectively classifying both categories with

few errors. The sensitivity of the model is 96%, indicating its ability to correctly identify positive

cases, while its specificity is 97%, reflecting its effectiveness in identifying negative cases.

The performance of VGG19 model using the AUC metric, which measures its effectiveness

in differentiating between classes, is shown in figure 4.2

Figure 4.2: ROC Curve for the VGG19 Model

The figure displays two ROC curves for a binary classification task, one for the "no" class

and the other for the "yes" class, both with an AUC of 0.9869. This high AUC indicates excellent

model performance, signifying that the classifier effectively distinguishes between the two classes

with a high true positive rate and a low false positive rate. Overall, the VGG19 model demonstrates

remarkable sensitivity and specificity, accurately predicting both classes with minimal errors.

5 Chapter 5: Response of Random

Signals to Linear Systems

Chapter 5: Response of Random Signals to Linear Systems

76

5.1 Random signals

A random signal 𝑋(𝑡) is a function of random variables indexed by time 𝑡, with each 𝑋(𝑡)

representing the value of the signal at a specific time. For each 𝑡, 𝑋(𝑡) can take on different values

based on a probability distribution. The values of 𝑋(𝑡) at different time points can either be

uncorrelated, as in the case of white noise, or correlated, as seen in autocorrelated signals, where

the value at one time depends on previous values.

Examples of random signals are: speech, audio, ECG, EEG, economic series…

 Speech: Varies in pitch, amplitude, and content unpredictably.

 Audio: Includes music and environmental sounds with complex, often unpredictable

patterns.

 ECG (Electrocardiogram): While generally periodic, it contains random variations in

intervals and amplitudes.

 EEG (Electroencephalogram): Brain activity signals that are highly complex and non-

stationary.

Statistical properties used to describe random signals are:

 The mean 𝜇𝑋 = 𝐸[𝑋(𝑡)], which is the expected value of the signal at time 𝑡.

 The variance 𝜎𝑋
2 = 𝐸[(𝑋(𝑡) − 𝜇𝑋)

2], which describes how much the signal varies around

the mean at time 𝑡.

 The autocorrelation 𝑅𝑋(𝑡1, 𝑡2) = 𝐸[𝑋(𝑡1)𝑋(𝑡2)], measuring the relationship between the

values at two different times 𝑡1 and 𝑡2.

 Stationarity, which means the signal’s statistical properties (like mean and variance) do

not change over time.

Random signals are important in areas such as signal processing, where they are used for

noise reduction and data transmission, communications, where they model noise and interference,

and control systems, where they represent random disturbances or uncertainties in inputs.

5.2 A Linear Time-Invariant (LTI) system

A Linear Time-Invariant (LTI) system, such as filters, is a system for which both the

properties of linearity and time invariance hold. An LTI system can be characterized by its impulse

response, denoted as ℎ(𝑡). The impulse response ℎ(𝑡) is the output of the system when an impulse

(represented by the Dirac delta function 𝛿(𝑡) is applied to the input.

For any input signal 𝑥(𝑡), the output of the LTI system can be computed by convolving the

input signal 𝑥(𝑡) with the system's impulse response ℎ(𝑡). The convolution is given by the

following integral:

Chapter 5: Response of Random Signals to Linear Systems

77

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) = ∫ ℎ(𝜏)𝑥(𝑡 − 𝜏)
+∞

−∞

𝑑𝜏

In the frequency domain, the input-output relationship becomes much simpler using the system’s

transfer function 𝐻(𝑓):

𝑌(𝑓) = 𝐻(𝑓)𝑋(𝑓)

Where 𝑋(𝑓) and 𝑌(𝑓) are the Fourier transforms of the input and output signals, and 𝐻(𝑓) is the

transfer function of the system.

5.3 Memoryless Systems

A memoryless system is characterized by an operator 𝐿, whose action at time 𝑡 depends only

on the input signal at time 𝑡. Such a system does not take into account any previous or future states

of the input signal. For a memoryless system, the response to an input signal 𝑥(𝑡) is given by:

𝑦(𝑡) = 𝐿[𝑥(𝑡)]

Where:

𝑦(𝑡) is the output,

𝑥(𝑡) is the input,

𝐿 represents the system function that relates input to output.

In a memoryless system, there is no integration or differentiation involved in the system’s

operation, making it instantaneous.

 A simple linear amplifier is a perfect example of a memoryless system. For an input

𝑥(𝑡), the amplifier gives an output 𝑦(𝑡) as:

𝑦(𝑡) = 𝐴𝑥(𝑡)

Where 𝐴 is a constant gain. This system has no memory since the output at any time t depends

only on the input at time t.

 A diode that clips signals based on certain thresholds can also be modeled as a

memoryless system but with a nonlinear response:

𝑦(𝑡) = {

𝑥(𝑡) 𝑖𝑓 |𝑥(𝑡)| < 𝑉𝑐𝑙𝑖𝑝
𝑉𝑐𝑙𝑖𝑝 𝑖𝑓 𝑥(𝑡) > 𝑉𝑐𝑙𝑖𝑝
−𝑉𝑐𝑙𝑖𝑝 𝑖𝑓 𝑥(𝑡) < −𝑉𝑐𝑙𝑖𝑝

Here, 𝑉𝑐𝑙𝑖𝑝 is the clipping threshold.

Chapter 5: Response of Random Signals to Linear Systems

78

5.4 Systems with Memory

A system is said to have memory when the present output depends on past input values,

meaning the past affects the present. In contrast, a causal system is one where the output at any

time depends only on current and past inputs, but never on future inputs. In real-world physical

systems, the future cannot influence the present, which means these systems are inherently non-

anticipatory. This principle of causality ensures that physical systems do not rely on future

information for their present state, making them causal by nature.

5.5 Characteristics of Memoryless Systems

5.5.1 Instantaneous Response

 The output is an immediate function of the input. There is no delay, and no historical data is

stored.

5.5.2 Causality

 A memoryless system can be causal (output depends on the present input) or non-causal (if

it depends on future inputs), but for most practical physical systems, it’s causal.

5.5.3 Linearity

Memoryless systems can be either linear or nonlinear depending on how the input 𝑥(𝑡) is

transformed into the output.

5.6 Response of Memoryless Systems to Random Signals

When the input to a memoryless system is a random signal 𝑥(𝑡), the output 𝑦(𝑡) inherits the

randomness of the input. However, the statistical properties of the output can still be determined

if the input properties are known.

Example

 Let’s assume that the random input 𝑥(𝑡) has a Gaussian distribution with mean 𝜇𝑥 and

variance 𝜎𝑥
2. If the system is a linear memoryless system with a gain 𝐴, the output 𝑦(𝑡) will also

have a Gaussian distribution:

 Mean of output: 𝜇𝑦=A⋅𝜇𝑥.

 Variance of output: 𝜎𝑦
2 = 𝐴2𝜎𝑥

2.

For a nonlinear memoryless system, the statistical properties of the output are more complex and

often require specialized techniques such as moment-generating functions to calculate.

5.7 Power Spectral Density (PSD)

5.7.1 Densities of Energy Spectral Density and Power Spectral Density

The Fourier transform of the autocorrelation function is called the power spectral density

(for signals with finite average power) or the energy spectral density (for signals with finite

Chapter 5: Response of Random Signals to Linear Systems

79

energy). This allows us to analyze how the signal's power or energy is distributed across different

frequencies.

The power spectral density (PSD) is given by the following expression:

𝑆𝑥(𝑓) = ∫ 𝑅𝑥(𝜏)𝑒
−𝑗2𝜋𝑓𝜏𝑑𝜏

+∞

−∞

Where:

𝑆𝑥(𝑓) is the power spectral density at frequency 𝑓,

𝑅𝑥(𝜏) is the autocorrelation function of the signal.

Unit: The unit of PSD is power per frequency unit (e.g., watts per hertz).

Total Power: The total power of the signal can be calculated by integrating the PSD across all

frequencies:

𝑃 = ∫ 𝑆𝑥(𝑓)𝑑𝑓
+∞

−∞

This total power represents the average power of the signal.

5.7.2 Properties of Power Spectral Density

5.7.3 Non-negativity

 𝑆𝑥(𝑓) is always non-negative since it represents power.

5.7.4 Symmetry

For real-valued signals, 𝑆𝑥(𝑓) is symmetric around 𝑓 = 0, meaning 𝑆𝑥(𝑓) = 𝑆𝑥(−𝑓).

5.7.4.1 Wiener-Khinchin Theorem

 This theorem establishes the relationship between the autocorrelation function and the power

spectral density. It allows us to compute the PSD from the autocorrelation.

5.8 Methods to Estimate Power Spectral Density

Estimating the Power Spectral Density (PSD) of a continuous-time signal can be done using

two main types of methods: Non-parametric Methods (Model-free) and Parametric Methods

(Model-based).

The choice between these methods depends on the signal's characteristics and the data available.

Each has advantages, and the best method for a given scenario depends on factors like

computational efficiency, resolution needs, and the signal's nature. PSD estimation helps analyze

the frequency content and power distribution of signals, which is critical in various signal

processing applications.

Chapter 5: Response of Random Signals to Linear Systems

80

5.8.1 Non-parametric Methods

These methods do not assume a specific model for the signal and rely directly on the data to

estimate the PSD.

5.8.1.1 Periodogram

A widely used and straightforward technique is the periodogram, which estimates the power

spectral density (PSD) by calculating the squared magnitude of the Fourier transform of the signal:

𝑃𝑥(𝑓) =
1

𝑇
|𝑋(𝑓)|2

where 𝑇 is the observation period, and 𝑋(𝑓) is the Fourier transform of the signal. The

periodogram is computationally efficient, but it can exhibit high variance, particularly for short

observation periods.

Pros:

 Simple and easy to implement.

 Computationally efficient, especially with the Fast Fourier Transform (FFT).

 Cons:

 High variance: The periodogram can give noisy PSD estimates, especially for short signals.

 Spectral leakage: If the signal is not periodic within the observation window, the energy

leaks into other frequency bins, leading to inaccurate PSD estimates.

5.8.1.2 Welch’s Method

Welch's method is a technique used to reduce the variance of the periodogram for estimating

the power spectral density (PSD) of a signal. It works by dividing the signal into overlapping

segments, applying a window function to each segment to reduce spectral leakage, and then

computing and averaging the periodograms for each segment. This results in a smoother and more

reliable estimate of the PSD compared to the basic periodogram method.

Pros:

 Lower variance compared to the simple periodogram.

 Better for stationary signals (those whose statistical properties don’t change over time).

Cons:

 Reduced frequency resolution due to averaging.

 Can still suffer from spectral leakage, although windowing helps mitigate this.

5.8.1.3 Blackman-Tukey Method

This method uses the autocorrelation function of the signal, which is windowed, and then

applies the Fourier transform to the autocorrelation function to estimate the PSD. It’s based on the

Chapter 5: Response of Random Signals to Linear Systems

81

Wiener-Khinchin theorem, which states that the Fourier transform of the autocorrelation function

equals the PSD.

Pros

 flexibility in choosing the window function for the autocorrelation sequence.

 A smoother PSD estimate than the periodogram due to the averaging inherent in the

autocorrelation.

 Cons

 Tradeoff between resolution and variance: A larger window length improves frequency

resolution but increases variance.

 More computationally intensive than the periodogram.

5.8.1.4 Multitaper Method

1

2 The multitaper method effectively reduces variance in power spectral density (PSD) estimation

by employing multiple orthogonal tapers (or windows) to generate several independent PSD

estimates, which are subsequently averaged. Specifically, this process involves applying multiple

tapers, such as Slepian sequences, to the signal, estimating the PSD for each tapered version of the

signal, and then averaging these estimates to yield a final PSD estimate. This approach is designed

to minimize spectral leakage and reduce bias in the results.

Pros:

 Provides a good tradeoff between bias and variance.

 Effective in reducing spectral leakage and variance simultaneously.

 Better suited for signals with complex spectral characteristics.

Cons:

 More computationally expensive due to the use of multiple tapers.

 The choice of tapers and the number of tapers can affect the final estimate.

5.8.2 Parametric Methods

These techniques rely on the premise that the signal can be modeled using a specific

structure, such as an autoregressive (AR), moving average (MA), or autoregressive-moving-

average (ARMA) process. By estimating the parameters associated with these models, the power

spectral density (PSD) can be calculated. This method takes advantage of the established structure

of the signal, facilitating a more precise estimation of the PSD in comparison to non-parametric

approaches.

Chapter 5: Response of Random Signals to Linear Systems

82

5.8.2.1 Autoregressive (AR) Model-Based Methods

These methods assume that the signal can be modeled as an autoregressive (AR) process.

The power spectral density (PSD) can then be computed by estimating the parameters of the AR

model.

 The PSD is given by:

𝑆𝑥(𝑓) =
𝜎2

|1 − ∑ 𝑎𝑘𝑒−𝑗2𝜋𝑓𝑘
𝑝
𝑘=1

|
2

Where 𝑎𝑘 are the AR model coefficients, and 𝜎2 is the noise variance.

Pros:

 Provides good frequency resolution, especially for signals with sharp spectral peaks.

 Effective for signals with narrowband features.

Cons:

 Poor at modeling broadband signals.

 Requires careful selection of model order ppp, which can be challenging.

5.8.2.2 Moving Average (MA) Model

The MA model assumes the signal can be represented as the output of an all-zero filter

driven by white noise. The signal depends on a weighted sum of current and past noise terms:

𝑥(𝑡) = ∑𝑏𝑘

𝑞

𝑘=0

𝜖(𝑡 − 𝑘)

where 𝑏𝑘 are the MA coefficients and 𝜖(𝑡) is white noise.

Pros:

 Well-suited for modeling signals with deep spectral nulls.

 Simpler for signals that exhibit rapid changes.

Cons:

 Less commonly used because it can be numerically unstable and doesn’t work as well

with sharp spectral peaks.

 Sensitive to noise.

5.8.2.3 Autoregressive Moving Average (ARMA) Model

The ARMA model combines both the AR and MA models, assuming the signal is the

output of a filter that has both poles and zeros, driven by white noise:

Chapter 5: Response of Random Signals to Linear Systems

83

𝑥(𝑡) = ∑𝑎𝑘

𝑝

𝑘=1

𝑥(𝑡 − 𝑘) +∑𝑏𝑘

𝑞

𝑘=0

𝜖(𝑡 − 𝑘)

This provides greater flexibility in modeling a wide range of signals.

Pros:

 More flexible than either AR or MA models alone, capable of modeling both narrowband

and broadband signals.

Cons:

 More complex parameter estimation due to the combined AR and MA components.

 Selecting both the AR and MA orders can be challenging.

5.8.2.4 Prony’s Method

Prony’s method fits a sum of complex exponentials to the signal by solving a set of linear

equations. This technique is useful for modeling signals with sharp spectral peaks, such as damped

sinusoids.

Pros:

 Very accurate for signals with sharp spectral peaks.

 Effective in applications like radar, sonar, and modal analysis.

Cons:

 Highly sensitive to noise, which can lead to instability in the model.

 Computationally intensive due to the matrix operations involved in solving the system of

equations.

Each method comes with its own advantages and drawbacks. Non-parametric methods are

generally simpler to implement but can experience high variance or lower resolution. In contrast,

parametric methods provide improved resolution for certain types of signals but necessitate a

precise model and careful selection of parameters. The selection of an appropriate method is

influenced by the unique characteristics of the signal and the specific requirements of the analysis.

5.9 Applications of Power Spectral Density

 Signal Processing: PSD is widely used to analyze the frequency content of signals,

especially in communications and audio processing.

 Noise Analysis: Engineers use PSD to understand the frequency content of noise in

systems, which helps in designing filters and improving signal quality.

Chapter 5: Response of Random Signals to Linear Systems

84

 Biomedical Applications: PSD is used in EEG analysis to understand the brain’s activity

and in ECG analysis for heart rate variability studies.

5.10 Response of LTI Systems to Random Signals

When the input to an LTI system is a random signal, the output is also a random signal. If

the input is characterized by its PSD 𝑆𝑥(𝑓), the PSD of the output can be computed using the

transfer function 𝐻(𝑓):

𝑆𝑦(𝑓) = |𝐻(𝑓)|
2𝑆𝑥(𝑓)

This equation shows how the system shapes the frequency content of the input signal.

Example

Consider an LTI system characterized by the impulse response ℎ(𝑡) = 𝑒−𝑡𝑢(𝑡), where 𝑢(𝑡) is the

unit step function. A random signal 𝑥(𝑡) is defined as a white Gaussian noise process with zero

mean and power spectral density 𝑆𝑥(𝑓) =
𝑁0

2
, where 𝑁0 is a constant.

a) Determine the output of the LTI system 𝑥(𝑡) in terms of the input 𝑥(𝑡).

b) Calculate the power spectral density 𝑆𝑦(𝑓) of the output signal 𝑦(𝑡).

c) Find the variance of the output signal 𝑦(𝑡).

Solution

a) The output 𝑦(𝑡) of an LTI system to an input 𝑥(𝑡) can be computed using the convolution

of the input signal 𝑥(𝑡) with the system's impulse response ℎ(𝑡):

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)
+∞

−∞

𝑑𝜏

𝑦(𝑡) = ∫ 𝑥(𝜏)𝑒−(𝑡−𝜏)𝑢(𝑡 − 𝜏)
+∞

−∞

𝑑𝜏

= ∫ 𝑥(𝜏)𝑒−(𝑡−𝜏)
𝑡

−∞

𝑑𝜏

b) The relationship between the input and output power spectral densities for an LTI system

is given by:

𝑆𝑦(𝑓) = |𝐻(𝑓)|
2𝑆𝑥(𝑓)

𝐻(𝑓) = ℱ[ℎ(𝑡)]

= ℱ[𝑒−𝑡𝑢(𝑡)]

Chapter 5: Response of Random Signals to Linear Systems

85

=
1

1 + 𝑗2𝜋𝑓

|𝐻(𝑓)|2 = |
1

1 + 𝑗2𝜋𝑓
|
2

=
1

1 + (2𝜋𝑓)2

𝑆𝑦(𝑓) =
1

1 + (2𝜋𝑓)2
.
𝑁0
2

=
𝑁0

2(1 + (2𝜋𝑓)2)

c) The variance of the output signal 𝑦(𝑡) can be determined from its power spectral density.

The variance 𝜎𝑦
2 is given by:

𝜎𝑦
2 = ∫ 𝑆𝑦(𝑓)

+∞

−∞

𝑑𝑓

𝜎𝑦
2 = ∫

𝑁0
2(1 + (2𝜋𝑓)2)

+∞

−∞

𝑑𝑓

This integral can be evaluated using a standard result from integral calculus:

∫
1

𝑥2 + 𝑎2

+∞

−∞

𝑑𝑥 =
𝜋

𝑎

𝜎𝑦
2 =

𝑁0
8𝜋2

∫
1

(
1
2𝜋)

2

+ 𝑓2

+∞

−∞

𝑑𝑓

=
𝑁0
8𝜋2

.
𝜋

1
2𝜋

=
𝑁0
4

Example2

An LTI system is characterized by the impulse response ℎ(𝑡) = 𝑒−𝑡𝑢(𝑡), where 𝑢(𝑡) is the unit

step function. The input signal 𝑥(𝑡) is a wide-sense stationary (WSS) random process with the

following characteristics:

Mean: 𝐸[𝑥(𝑡)] = 5

Chapter 5: Response of Random Signals to Linear Systems

86

Autocorrelation function: 𝑅𝑥(𝜏) = 𝜎𝑥
2𝑒−𝛼|𝜏|, where 𝜎𝑥

2 = 4 and 𝛼 = 2

a) Find the mean 𝐸[𝑦(𝑡)] of the output signal 𝑦(𝑡).

b) Determine the output autocorrelation function 𝑅𝑦(𝜏) of the system.

c) Calculate the output variance 𝜎𝑦
2.

Solution

a) Mean of the Output Signal 𝐸[𝑦(𝑡)]

The mean of the output signal 𝑦(𝑡) is related to the mean of the input signal 𝑥(𝑡) through the

impulse response of the system. The general expression for the mean of the output is given by:

𝐸[𝑦(𝑡)] = ∫ ℎ(𝜏)𝐸[𝑥(𝑡 − 𝜏)]𝑑𝜏
+∞

−∞

Since 𝑥(𝑡) is a WSS process and its mean 𝐸[𝑥(𝑡)] = 5 is constant, the equation simplifies to:

𝐸[𝑦(𝑡)] = 𝐸[𝑥(𝑡)]∫ 𝑒−𝜏𝑑𝜏
+∞

0

The integral evaluates as:

∫ 𝑒−𝜏𝑑𝜏
+∞

0

= 1

Thus, the mean of the output signal is:

𝐸[𝑦(𝑡)] = 5 × 1 = 5

b) The output autocorrelation function 𝑅𝑦(𝜏)

The output autocorrelation function 𝑅𝑦(𝜏) is related to the input autocorrelation function 𝑅𝑥(𝜏)

through the convolution of the impulse response ℎ(𝑡) with itself. The expression is given by:

The expression is given by:

𝑅𝑦(𝜏) = ∬ ℎ(𝑡1)ℎ(𝑡2)

+∞+∞

−∞−∞

𝑅𝑥(𝑡2 − 𝑡1 + 𝜏)𝑑𝑡1𝑑𝑡2

Given that the impulse response is ℎ(𝑡) = 𝑒−𝑡𝑢(𝑡), and the input autocorrelation function is

𝑅𝑥(𝜏) = 𝜎𝑥
2𝑒−𝛼|𝜏|, this becomes:

𝑅𝑦(𝜏) = 4 ∬ 𝑒−𝑡1𝑒−𝑡2

+∞ +∞

0 0

𝑒−2|𝑡2−𝑡1+𝜏|𝑑𝑡1𝑑𝑡2

Chapter 5: Response of Random Signals to Linear Systems

87

Breaking the expression into two cases for 𝑡2 − 𝑡1 + 𝜏 being positive or negative, the integration

gives:

𝑅𝑦(𝜏) =
4

2(2 + 1)
𝑒−3|𝜏|

=
2

3
𝑒−3|𝜏|

c) Output Variance 𝜎𝑦
2

The variance of the output signal is simply the value of the output autocorrelation function

evaluated at 𝜏 = 0:

𝜎𝑦
2 = 𝑅𝑦(0)

=
2

3
𝑒0

=
2

3

5.11 Applications of Random Signal Response in LTI Systems

 Communication Systems: In wireless communication, the random noise added during

transmission can be analyzed using the PSD, allowing for noise reduction techniques to

be applied.

 Control Systems: For random disturbances acting on a system, the PSD helps in

designing controllers that minimize the impact of these disturbances.

References

 References

89

References

[1] J.P. MULLER, « Le filtrage numérique », Décembre 2000.

[2] S. Sarpal, «Algorithms, ASN Filter Designer, ASN Filter Designer Functionality Difference

between IIR and FIR filters: a practical design guide», April 2020.

[3] A. Kourgli, « Analyse et Filtrage des signaux numeriques : Conception des Filtres

Numériques RIF », 2016.

[4] M. BOUTAA, « Cours de Traitement avancé des signaux physiologiques ». 2022

[5] B. Perret, «Traitement et analyse d'images», 2017.

[6] M. Djemai, « Approche Hybride Basée sur les SVM et les AG en vue du Dépistage de la Surdité

de Perception utilisant les Potentiels Evoqués Auditifs », PhD Thesis, July 2023.

https://www.advsolned.com/category/algorithms/
https://www.advsolned.com/category/asn-filter-designer/
https://www.advsolned.com/category/asn-filter-designer-functionality/
https://www.advsolned.com/difference-between-iir-and-fir-filters-a-practical-design-guide/
https://www.advsolned.com/difference-between-iir-and-fir-filters-a-practical-design-guide/
https://perso.esiee.fr/~perretb/I5FM/TAI/index.html

	1 Chapter 1: Analysis and Synthesis of FIR and IIR Digital Filters
	1.1 Signal

	Figure 1.1: Random signal in time space
	1.1.1 Dimensional classification
	1.1.2 Analog signal (continuous)
	1.1.3 Digital signal
	1.1.4 Digitization of an analog signal
	1.1.5 Analog-to-Digital Conversion
	1.
	1.1.
	1.2.
	1.1.5.1 Sampling
	1.1.5.2 Quantization and Encoding

	1. (1)
	1.2. (1)
	1.1.6 Discrete-Time Basic Signals

	2.
	1.3.
	1.1.6.1 Unit Impulse or Kronecker Delta
	This is a signal denoted as δ(k) such that:
	1.1.6.2 Unit Step
	This is a signal denoted as 𝒖(𝒏) such that:
	1.1.6.3 Causal Exponential Signal
	This is the signal such that:
	1.1.6.4 Causal Rectangular Signal of Duration N or Pulse

	1. (2)
	1.1. (1)
	1.2. (2)
	1.3.
	1.1.7 Properties of Discrete-Time Signals
	1.4.
	1.1.7.1 Causality
	A signal is said to be causal when:
	1.1.7.2 Energy
	The energy of a discrete-time signal 𝒙,𝒏. is defined as follows:
	1.1.7.3 Average Power
	The average power of a signal 𝒙,𝒏. is defined as:
	1.1.7.4 Instantaneous Power
	Instantaneous power is defined by:
	𝑷,𝒏.= ,,𝒙,𝒏..-𝟐.
	1.1.7.5 Periodicity
	A signal 𝒙,𝒏. is periodic with period N if and only if 𝒙,𝒏+𝑵.=𝒙,𝒏.. Otherwise, 𝒙,𝒏. is aperiodic.
	1.1.7.6 Symmetry
	A signal 𝒙,𝒏.. is symmetric or even if and only if 𝒙,−𝒏.=𝒙,𝒏.. A signal 𝒙,𝒏. is antisymmetric or odd if and only if 𝒙,−𝒏.=−𝒙,𝒏.. Every signal can be decomposed into the sum of an even signal and an odd signal.
	1.1.7.7 Autocorrelation
	The autocorrelation of a signal 𝒙,𝒏. is defined by:
	1.1.7.8 Cross-correlation
	The cross-correlation of two signals 𝒙,𝒏. and 𝒚,𝒏. is defined by:
	1.1.7.9 Convolution
	The linear convolution between two signals 𝒙,𝒏. and 𝒚,𝒏. is defined by:

	1.2 Z-Transform
	The Z-transform is a widely used tool for studying digital signal processing systems. It plays a role analogous to that of the Laplace transform in continuous-time systems.

	The bilateral Z-transform of a discrete-time signal 𝑥,𝑛. is defined by:
	1.2.1 Examples of Z-Transform
	Example 1
	Let the following discrete-time signal be:
	1.2.2 Properties of the Z-Transform
	1.5.
	1.5.1.
	1.5.2.
	1.2.2.1 Linearity
	1.2.2.2 Time shifting
	1.2.2.3 Scaling in Z- Domain
	1.2.2.4 Time reversal
	1.2.2.5 Differentiation in Z- Domain
	1.2.2.6 Convolution property

	1.2.3 Inverse Z-Transform
	Table 1.1: Z-Transforms and Inverse Z-Transforms of Common Functions

	1.3 Digital Filtering
	A digital filter is a system that processes discrete-time signals by applying mathematical operations to modify or enhance certain aspects of the signal. It operates on sequences of data (e.g., audio or sensor data) and is characterized by its transmi...
	3.
	1.3.1 Transmittance in Z of a Digital Filter:
	1.3.2 Algorithm for calculating 𝐲,𝐧.
	1.3.3 Transition from the Algorithm to T(z)
	1.3.4 Transition from T(z) to the algorithm
	Example We aim to find the calculation algorithm of the filter characterized by the following transmittance T,z.:
	1.3.5 Stability of a digital filter
	1.3.6 Representation of a Digital Filter
	A digital filter can be represented using several types of specifications, including:
	2.
	2.1.
	2.2.
	2.3.
	2.4.
	2.5.
	1.3.6.1 Z-Transfer Function

	This is the most common representation. It links the input and output in the Z-plane as 𝑌,𝑧.=𝐻,𝑧..𝑋,𝑧.. Going forward, we will assume:
	𝐻,𝑧.=,𝑁,𝑧.-𝐷,𝑧..=,,𝑖=0-𝑁-,𝑏-𝑖.,𝑧-−𝑖..-1+,𝑖=1-𝑁-,𝑎-𝑖.,𝑧-−𝑖... Where 𝑁,𝑧. is the numerator polynomial of the transfer function, and 𝐷,𝑧. is its denominator. Here, N represents the filter's order. If 𝐻,𝑧. has poles, the filter is ...
	1.3.6.2 Impulse Response

	The impulse response is the inverse Z-transform of 𝐻,𝑧..
	1.3.6.3 Difference Equation
	An inverse Z-transform of the equation from the first representation leads to the following form:

	1.3.7 Specifications of a Digital Filter
	2.6.
	1.3.7.1 Low-pass filters

	allow frequencies below a cutoff frequency ,𝑓-𝑐. to pass and block those above it (see Figure 1.9.a).
	1.3.7.2 High-pass filters

	block frequencies below a cutoff frequency ,𝑓-𝑐. and allow those above it to pass (see Figure 1.9.b).
	1.3.7.3 Band-pass filters

	allow frequencies around a central frequency ,𝑓-0.(or between ,𝑓-,𝑐-1.. and ,𝑓-,𝑐-2..) to pass and block others (see Figure 1.9.c).
	1.3.7.4 Band-stop filters

	block frequencies around a central frequency ,𝑓-0.(or between ,𝑓-,𝑐-1.. and ,𝑓-,𝑐-2..) and allow others to pass (see Figure 1.9.d).

	Figure 1.10: Ideal and actual frequency response of lowpass filters
	1.4 Classification of Digital Filters
	1.4.1 Finite Impulse Response (FIR) Digital Filters
	2.7.
	1.4.1.1 Characteristics of FIR Filters

	The main characteristics of FIR filters are:
	1.4.1.2 Structure of FIR Filters
	 Direct Form FIR Filter
	 Direct Form Transposed FIR Filter

	1.4.2 Advantages of FIR Filters
	1.4.3 Disadvantages of FIR Filters
	1.4.4 FIR Filter Design
	1.4.4.1 FIR Filter Design by Windowing
	Figure 1.13: Impulse response of an ideal lowpass filter with ,𝜔-𝑐.=,𝜋-4.
	Figure 1.14: Truncated impulse response: linear-phase, but non-causal
	Figure 1.15: Truncated impulse response: causal, but nonlinear-phase
	Figure 1.16: Truncated impulse response: causal and linear phase
	Figure 1.17: Frequency response of the filter designed by a rectangular window

	Summary
	1.4.4.2 Frequency Sampling Method

	1.5 Infinite Impulse Response (IIR) Digital Filters
	Analog filters inherently have an infinite impulse response. IIR digital filters behave similarly, except for the effects caused by discretization. This category of filter is also characterized by a transfer function in the z-domain that contains pole...
	2.8.
	1.5.1 IIR Filter Topologies
	 Direct Type I
	 Direct Type II
	 Transposed Type II

	1.5.2 IIR Filter Design
	 IIR Filter Design Using Bilinear Transformation
	where T is the sampling period.
	Example
	Design a digital low-pass Butterworth filter using the bilinear transformation method with the following specifications:
	 Analog cutoff frequency: ,𝜔-𝑐.=1000 ,𝑟𝑎𝑑-𝑠.
	 Sampling frequency: ,𝐹-𝑠.=8000 𝐻𝑧
	 Order of the filter: N=1 (first-order Butterworth filter)
	Step-by-Step Solution:
	Step 1: Define the Analog Filter Transfer Function
	The transfer function of a first-order analog Butterworth filter is given by:
	𝐻,𝑝.=,,𝜔-𝑐.-𝑝+,𝜔-𝑐..
	where ,𝜔-𝑐.=1000 rad/s is the analog cutoff frequency.
	Thus, the analog transfer function becomes:
	𝐻,𝑝.=,1000-𝑝+1000.
	Step 2: Apply the Bilinear Transformation
	The bilinear transformation is given by:
	,2-𝑇. ,1−,𝑧-−1.-1+,𝑧-−1..
	where 𝑇=,1-,𝐹-𝑠..=8000=0.000125 seconds is the sampling period.
	Substituting this into the analog transfer function 𝐻,𝑝., we replace s with the bilinear transformation:
	𝐻,𝑧.=𝐻(,2-𝑇. ,1−,𝑧-−1.-1+,𝑧-−1..)
	First, calculate the term: 𝑝=,2-0.000125. ,1−,𝑧-−1.-1+,𝑧-−1..=16000,1−,𝑧-−1.-1+,𝑧-−1..
	Now, substitute this into the analog transfer function:
	𝐻,𝑧.=,1000-16000,1−,𝑧-−1.-1+,𝑧-−1..+1000.
	Simplify the expression:
	𝐻,𝑧.=,1000(1+,𝑧-−1.)-16000(1−,𝑧-−1.)+1000(1+,𝑧-−1.).
	𝐻,𝑧.=,1000(1+,𝑧-−1.)-17000−1500,𝑧-−1..
	Step 3: Final Digital Filter Transfer Function
	Thus, the digital filter's transfer function becomes:
	𝐻,𝑧.=,1000(1+,𝑧-−1.)-17000−1500,𝑧-−1.. (1)
	We can simplify this by dividing both the numerator and the denominator by 17000:
	𝐻,𝑧.=,,1000-17000.(1+,𝑧-−1.)-1−,1500-17000.,𝑧-−1..
	𝐻,𝑧.=,0.0588(1+,𝑧-−1.)-1−0.8824,𝑧-−1..
	Step 4: Difference Equation Form
	The digital filter transfer function can now be converted into the time-domain difference equation using:
	𝐻,𝑧.,𝑌(𝑧)-𝑋(𝑧).=,0.0588(1+,𝑧-−1.)-1−0.8824,𝑧-−1..
	This corresponds to the following difference equation:
	𝑦,𝑛.−0.8824𝑦,𝑛−1.=0.0588×𝑥,𝑛.+0.0588×𝑥,𝑛−1.
	Or equivalently:
	𝑦,𝑛.=0.8824𝑦,𝑛−1.+0.0588×𝑥,𝑛.+0.0588×𝑥,𝑛−1.
	In this example, we designed a digital low-pass Butterworth filter using the bilinear transformation method. We started with an analog Butterworth filter with a cutoff frequency of 1000 rad/s and a sampling frequency of 8000 Hz. After applying the bil...
	1.5.2.1 Advantages of IIR digital filters
	1.5.2.2 Disadvantages of IIR digital filters

	Figure 1.24: Example of filtering on a sound file
	Application of a filter for edge detection

	2 Chapter 2: Averaging Filter and Median Filter
	1.
	2.
	2.1 Averaging Filter
	1. (1)
	2. (1)
	2.1.1 Example Application for a Physiological Signal
	2.1.2 Local Averaging Filter Application in Medical Imaging

	2.2 Median filter
	What Is Median Filtering?
	,,22 24 27-31 98 29-27 22 23..
	This image has a significant amount of salt-and-pepper noise, namely the black and white pixels that appear out of place Median filtering is excellent at reducing this type of noise. The filtering algorithm will scan the entire image, using a small ma...
	With the example above, the sorted values are [22, 22, 23, 24, 27, 27, 29, 31, 98], and median of this set is 27. Let’s apply the filter and see how it looks:
	Left: original image with noise. Right: Image with median filter applied.
	Figure 2.8: Example of Denoising Salt-and-Pepper Noise Using median filter
	Look at that! Basically all of the salt-and-pepper noise is gone! Now, let’s compare this to a Gaussian filter and see if there is a difference:
	Figure 2.9: Comparison of Median Filtering (Left) and Gaussian Filtering (Right)
	As we can see, the Gaussian filter didn’t get rid of any of the salt-and-pepper noise! The neat thing about a median filter is that the center pixel value will be replaced by a value that is present in the surrounding pixels. This differs from Gaussia...

	3 Chapter 3: Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT)
	3.1 Discrete Fourier Transform (DFT)
	When we want to compute the Fourier transform of a function 𝑥(𝑡) using a computer, since the computer only has a finite number of words of finite size, we are led to:
	 Discretize the time-domain function,
	 Truncate the time-domain function,
	 Discretize the frequency-domain function.
	Figure 3.1: Steps for Computing the Fourier Transform on a Computer: Discretization and Truncation
	𝑋,𝑓.=,−∞-+∞-𝑥,𝑡.,𝑒-−𝑗2𝜋𝑓𝑡.𝑑𝑡.
	,𝑥-∗.,𝑡.=𝑥(𝑡),𝑛=−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.).
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.)𝛿(𝑡−𝑛,𝑇-0.).
	,𝑋-∗.,𝑓.=,−∞-+∞-,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.)𝛿(𝑡−𝑛,𝑇-0.),𝑒-−𝑗2𝜋𝑓𝑡.𝑑𝑡..
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.),𝑒-−𝑗2𝜋𝑓𝑡..𝑑𝑡
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.),𝑒-−𝑗2𝜋𝑓𝑛,𝑇-0...𝑑𝑡
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑓𝑛,𝑇-0..,−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.).𝑑𝑡
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑓𝑛,𝑇-0.. where:,−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.).𝑑𝑡=1
	,𝑋-∗.,𝑓.=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑓𝑛,𝑇-0..
	On the other hand, we have:
	,𝑥-∗.,𝑡.=𝑥(𝑡),𝑛=−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.). (1)
	,𝑋-∗.,𝑓.=𝑋(𝑓)∗𝑇𝐹,,𝑛=−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.)..
	𝑇𝐹,,𝑛=−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.)..=𝑇𝐹,,𝑛=−∞-+∞-,𝐶-𝑛.,𝑒-𝑗2𝜋𝑛,𝑓-0.𝑡...
	,𝐶-𝑛.=,1-,𝑇-0..,−,,𝑇-0.-2.-,,𝑇-0.-2.-𝛿,𝑡.𝑑𝑡=,1-,𝑇-0..=,𝑓-0..
	𝑇𝐹,,𝑛=−∞-+∞-𝛿(𝑡−𝑛,𝑇-0.)..=,𝑓-0.𝑇𝐹,,𝑛=−∞-+∞-,𝑒-𝑗2𝜋𝑛,𝑓-0.𝑡...
	,=𝑓-0.,−∞-+∞-,𝑛=−∞-+∞-,𝑒-𝑗2𝜋,𝑛𝑓-0.𝑡.,×𝑒-−𝑗2𝜋𝑓𝑡.𝑑𝑡..
	,=𝑓-0.,−∞-+∞-,𝑛=−∞-+∞-,𝑒-−𝑗2𝜋,(𝑓−𝑛𝑓-0.)𝑡.𝑑𝑡..
	,=𝑓-0.,𝑛=−∞-+∞-,−∞-+∞-,𝑒-−𝑗2𝜋,(𝑓−𝑛𝑓-0.)𝑡.𝑑𝑡..
	,=𝑓-0.,𝑛=−∞-+∞-𝛿(𝑓−𝑛,𝑓-0.).
	,𝑋-∗.,𝑓.=𝑋(𝑓)∗𝑇𝐹,,𝑛=−∞-+∞-𝛿(𝑛−𝑛,𝑇-0.)..
	,𝑋-∗.,𝑓.=𝑋(𝑓)∗,𝑓-0.,𝑛=−∞-+∞-𝛿(𝑓−𝑛,𝑓-0.).
	, =𝑓-0.,−∞-+∞-𝑋(𝜏),𝑛=−∞-+∞-𝛿,,𝑓−𝑛,𝑓-0..−𝜏.𝑑𝜏..
	, =𝑓-0.,−∞-+∞-𝑋(𝜏),𝑛=−∞-+∞-𝛿,𝜏−,𝑓−𝑛,𝑓-0...𝑑𝜏..
	,=𝑓-0.,𝑛=−∞-+∞-𝑋(𝑓−𝑛,𝑓-0.).
	,𝑋-∗.,𝑓.,=𝑓-0.,𝑛=−∞-+∞-𝑋(𝑓−𝑛,𝑓-0.).
	𝑓=𝑘∆𝑓
	,𝑓-0.=𝑁∆𝑓→∆𝑓=,,𝑓-0.-𝑁.=,1-,𝑁𝑇-0..
	,𝑋-∗.,𝑓.=,𝑛=−∞-+∞-,𝐶-𝑛.,𝑒-−𝑗2𝜋𝑛,𝑇-0.𝑓..
	,𝐶-𝑛.=,1-,𝑓-0..,−,,𝑓-0.-2.-,,𝑓-0.-2.-,𝑋-∗.,𝑓.,𝑒-𝑗2𝜋𝑛,𝑇-0.𝑓.𝑑𝑓.
	,𝑋-∗.,𝑓.=,𝑛=−∞-+∞-,1-,𝑓-0..,−,,𝑓-0.-2.-,,𝑓-0.-2.-,𝑋-∗.,𝑓.,𝑒-𝑗2𝜋𝑛,𝑓𝑇-0..𝑑𝑓,𝑒-−𝑗2𝜋𝑛,𝑓𝑇-0....
	We also have:
	,𝑋-∗.,𝑓.=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑓𝑛,𝑇-0.. (1)
	By identification, we obtain:
	𝑥(𝑛,𝑇-0.)=,1-,𝑓-0..,−,,𝑓-0.-2.-,,𝑓-0.-2.-𝑋,𝑓.,𝑒-𝑗2𝜋𝑛,𝑓𝑇-0..𝑑𝑓.
	,𝑋-∗.,𝑓.=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑓𝑛,𝑇-0.. (2)
	,𝑋-∗.,𝑘∆𝑓.=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑘∆𝑓𝑛,𝑇-0..
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋𝑘,,𝑓-0.-𝑁.𝑛,𝑇-0..
	=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋,𝑛𝑘-𝑁..
	𝑋(𝑘)=,𝑛=−∞-+∞-𝑥(𝑛,𝑇-0.).,𝑒-−𝑗2𝜋,𝑛𝑘-𝑁..
	𝑥(𝑛,𝑇-0.)=,1-,𝑓-0..,−,,𝑓-0.-2.-,,𝑓-0.-2.-𝑋,𝑓.,𝑒-𝑗2𝜋𝑛,𝑓𝑇-0..𝑑𝑓. (1)
	𝑥(𝑛)=,1-,𝑓-0..,−,,𝑓-0.-2.-,,𝑓-0.-2.-𝑋,𝑘∆𝑓.,𝑒-𝑗2𝜋𝑛,𝑘∆𝑓-0..𝑑𝑓.
	𝑥(𝑛)=,1-𝑁.,𝑛=−,𝑁-2.-,𝑁-2.-𝑋(𝑘).,𝑒-𝑗2𝜋,1-𝑁.𝑛𝑘.
	𝑥(𝑛)=,1-𝑁.,𝑛=−,𝑁-2.-,𝑁-2.-𝑋(𝑘).,𝑒-𝑗2𝜋,𝑛𝑘-𝑁..
	In relation to the equations derived in the "DFT" section, it is helpful to introduce the following substitution:
	,𝑊-𝑁-𝑛𝑘.=,𝑒-−𝑗 ,2𝜋𝑛𝑘-𝑁..
	The ,𝑊-𝑁-𝑛𝑘. element in this substitution is also called the "twiddle factor." With respect to this substitution, we may rewrite the equation for computing the DFT and IDFT into these formats:
	𝐷𝐹𝑇,𝑥,𝑛..=𝑋,𝑘.=,𝑛=0-𝑁−1-𝑥,𝑛...,𝑊-𝑁-𝑛𝑘.
	𝐼𝐷𝐹𝑇,𝑋,𝑘..=𝑥,𝑛.=,1-𝑁..,𝑘=0-𝑁−1-𝑋,𝑘...,𝑊-𝑁-−𝑛𝑘.
	3.1.1 Propriétés de la TFD
	To enhance the efficiency of computing the DFT, certain properties of ,𝑊-𝑁-𝑛𝑘. are exploited. These properties stem from the graphical representation of the twiddle factor as a rotational vector for each nk value. They are described as follows:
	3.1.1.1 Periodicity

	The sequence 𝑋,𝑘. is a periodic sequence with a period of N.
	,1-𝑁..,𝑛=0-𝑁−1-𝑥(𝑛).,𝑒-−𝑗.,2.𝜋-𝑁..𝑘.𝑛..,𝑒-−𝑗.,2.𝜋-𝑁..𝑁.𝑛.=,1-𝑁..,𝑛=0-𝑁−1-𝑥(𝑛).,𝑒-−𝑗.,2.𝜋-𝑁..𝑘.𝑛.=𝑋,𝑘...
	3.1.1.2 Symetry

	where ,𝑋-∗.(𝑘) denotes the complex conjugate of 𝑋,𝑘..
	Example
	Consider the sequence:
	𝑥(𝑛)= [3, −1, 2, −2]
	We will calculate the DFT using the matrix form for N=4.
	DFT Matrix Form:
	The DFT matrix ,𝑊-𝑁. of size N×N is given by:
	,𝑊-𝑁-𝑛𝑘.=,𝑒-−𝑗,2𝜋-𝑁.𝑘𝑛.
	For N=4, the matrix ,𝑊-4. is: ,𝑒-−𝑗𝜋.
	,𝑊-4.=,,1 1 1 1-1 , 𝑒-−𝑗,𝜋-2.. ,𝑒-−𝑗𝜋. ,𝑒-−𝑗,3𝜋-2..-1 ,𝑒-−𝑗𝜋. ,𝑒-−2𝑗𝜋. ,𝑒-−3𝑗𝜋.-1 ,𝑒-−𝑗,3𝜋-2.. ,𝑒-−3𝑗𝜋. ,𝑒-−𝑗,9𝜋-2....
	Substituting values:
	, 𝑒-−𝑗,𝜋-2..=−𝑗
	,𝑒-−𝑗𝜋.=−1
	, 𝑒-−𝑗,3𝜋-2..=𝑗
	,𝑒-−𝑗2𝜋.=1
	The DFT matrix becomes:
	,𝑊-4.=,,1 1 1 1-1−𝑗 −1 𝑗-1 −1 1 1-1 𝑗 −1−𝑗..
	Step 1: Input Sequence 𝑥(𝑛):
	The input sequence is:
	𝑥=,,3-−1-2-−2..
	Step 2: Perform Matrix Multiplication
	Now multiply the DFT matrix ,𝑊-4. by the input sequence 𝑥:
	𝑋=,𝑊-4.𝑥=,,1 1 1 1-1−𝑗 −1 𝑗-1 −1 1 1-1 𝑗 −1−𝑗..×,,3-−1-2-−2..
	Perform the multiplication row by row:
	𝑋(0)=1×3+1×(−1)+1×2+1×(−2)=3−1+2−2=2
	𝑋(1)=1×3+(−j)×(−1)+(−1)×2+j×(−2) =3+j−2−2j=1−j
	𝑋(2)=1×3+(−1)×(−1)+1×2+(−1)×(−2)=3+1+2+2=8
	𝑋(3)=1×3+j× (−1) +(−1) ×2+(−j)×(−2)=3−j−2+2j= 1 + j
	The DFT of the sequence 𝑥(𝑛)= [3, −1, 2, −2] is: 𝑋(𝑘)= [2, 1−j, 8, 1+j]
	In this example, we computed the DFT of the sequence 𝑥(𝑛)= [3, −1, 2, −2] using matrix multiplication. The result 𝑋(𝑘)=[2,1−j,8,1+j] provides the frequency domain representation of the input sequence, showing how both positive and negative values ...
	3.1.2 Fast Fourier Transform (FFT)
	3.1.2.1 Radix-2 decimation in time FFT description

	The basic idea of the FFT is to decompose the DFT of a time-domain sequence of length N into successively smaller DFTs whose calculations require fewer arithmetic operations. This is known as a divide-and-conquer strategy, made possible using the prop...
	 a(m)=x(2m), that is, samples of x(n) for n = 2m
	 b(m)=x(2m+1), that is, samples of x(n) for n = 2m + 1
	where m is an integer in the range of 0 ≤ m <N/2.
	The DFT of 𝑥,𝑛. is given by:
	𝑋,𝑘.=,𝑛=0-𝑁−1-𝑥,𝑛...,𝑊-𝑁-𝑛𝑘.
	We split this sum into even and odd indices:
	𝑋,𝑘.= ,𝑛=0-𝑁/2−1-𝑥,2𝑚...,𝑊-𝑁-2𝑚𝑘.+,𝑛=0-𝑁/2−1-𝑥,2𝑚+1...,𝑊-𝑁-(2𝑚+1)𝑘.
	=,n=0-N/2−1-x,2m...,W-N-2mk.+,W-N-k.,n=0-N/2−1-x,2m+1..,W-N-2mk..
	=,n=0-,N-2.−1-a,m...,W-,N-2.-mk.+,W-N-k.,n=0-,N-2.−1-b,m..,W-,N-2.-mk..
	=𝐴(𝑘)
	0≤k≤N
	These two summations represent the N/2-point DFTs of the sequences a(m) and b(m), respectively.
	Thus, DFT[a(m)] = A(k) for even-numbered samples, and DFT[b(m)] = B(k) for odd-numbered samples.
	Thanks to the periodicity property of the DFT, the outputs for N/2 ≤ k < N from a DFT of length N/2 are identical to the outputs for 0 ≤ k <N/2.
	That is, A(k+N/2) = A(k) and B(k + N/2) = B(k) for 0≤ k <N/2.
	In addition, the factor ,𝑊-𝑁-𝑘+𝑁/2.=−,𝑊-𝑁-𝐾. thanks to the symmetry property.
	Thus, the whole DFT can be calculated as follows:
	,𝑋,𝑘.=𝐴,𝑘.+𝑊-𝑁-𝑘.𝐵(𝑘)
	,𝑋,𝑘+𝑁/2.=𝐴,𝑘.−𝑊-𝑁-𝑘.𝐵(𝑘)
	0≤k≤N/2
	This result, expressing the DFT of length recursively in terms of two DFTs of size N/2, is the core of the radix-2 DIT FFT. Note, that final outputs of X(k) are obtained by a +/- combination of A(k) and B(k) W, which is simply a size 2 DFT. These comb...
	Figure 3.2: Basic butterfly computation in the DIT FFT algorithm
	The procedure of computing the discrete series of an N-point DFT into two N/2-point DFT s may be adopted for computing the series of N/2-point DFTs from items of N/4-point DFT s. For this purpose, each N/2-point sequence should be divided into two sub...
	For illustrative purposes, Figure 3.3 depicts the computation of an N= 8-point DFT. We observe that the computation is performed in three stages (3 = log28), beginning with the computations of four 2-point DFTs, then two 4-point DFTs, and finally, one...
	Figure 3.3: Decomposition of an 8-point DFT
	Figure 3.4: 8-point radix-2 DIT FFT algorithm data flow
	Each dot represents a complex addition and each arrow represents a complex multiplication, as shown in Figure 3.4 The ,𝑊-𝑁-𝑘. factors in Figure 3.4 may be presented as a power of two ,,𝑊-2.. at the first stage, as a power of four ,,𝑊-4.. at the ...
	3.1.2.2 Radix-2 decimation in time FFT requirements

	For effective and optimal decomposition of the input data sequence into even and odd sub-sequences, it is good to have the power-of-two input data samples (.... 64, 128, and so on).
	The first step before computing the radix-2 FFT is re-ordering of the input data sequence (see also the left side of Figure 3.4 and Figure 3.5). This means that this algorithm needs a bit-reversed data ordering: that is, the MSBs become LSBs, and vice...
	Table 3.1: Bit reversal with an 8-point input sequence
	3.1.2.3 Fast Fourier Transform (FFT) in ECG Signal Analysis:
	3.1.2.4 Application of FFT in ECG Signal Analysis using MATLAB

	3.2 Discrete Cosine Transform (DCT)
	3.2.1 Mathematical Formulation
	3.2.2 1D DCT Formula:
	Example
	Input Sequence:
	For 𝑘=0: 𝑋(0)=𝛼,0.,𝑛=0-𝑁−1-𝑥.,𝑛.𝑐𝑜𝑠,,𝜋,2𝑛+1.0-8..=,1-2.,1+2+3+4.=5
	For 𝑘=1: 𝑋(1)=𝛼,0.,𝑛=0-𝑁−1-𝑥.,𝑛.𝑐𝑜𝑠,,𝜋,2𝑛+1.1-8..

	4 Chapter 4: Concepts of Characteristics and Classification of Physiological Signals
	4.1 Characteristics of Physiological Signals
	4.1.1 Types of Physiological Signals
	4.1.1.1 Electrocardiogram (ECG)
	4.1.1.2 Electroencephalogram (EEG)
	4.1.1.3 Electromyogram (EMG)

	4.2 Characteristics of Physiological Signals
	4.2.1 Non-stationary nature
	4.2.2 Periodicity
	4.2.3 Amplitude and frequency ranges
	4.2.4 Noise and artifacts

	4.3 Feature Extraction Methods
	4.3.1 Time-Domain Feature Extraction
	4.3.2 Mean and variance
	4.3.3 Root Mean Square (RMS)
	4.3.4 Zero-crossing rate

	4.4 Frequency-Domain Feature Extraction
	4.4.1 Discrete Fourier Transform (DFT) and Short-Time Fourier Transform (STFT)
	4.4.2 Power Spectral Density (PSD)
	4.4.3 Bandpower

	4.5 Wavelet Transform
	4.5.1 Wavelet coefficients

	4.6 Non-linear Feature Extraction
	4.6.1 Detrended Fluctuation Analysis (DFA)

	4.7 Classification Approaches
	4.7.1 Types of Classifiers
	4.7.1.1 Support Vector Machine (SVM)
	4.7.1.2 Artificial Neural Networks (ANN)
	4.7.1.3 K-Nearest Neighbors (KNN)
	4.7.1.4 Random Forest

	4.7.2 Training and Testing
	4.7.2.1 Training
	4.7.2.2 Testing

	4.8 Performance Evaluation
	4.8.1 Accuracy, Sensitivity, and Specificity
	4.8.1.1 Accuracy
	4.8.1.2 Sensitivity (Recall)
	4.8.1.3 Specificity

	4.8.2 Cross-Validation
	4.8.2.1 k-Fold Cross-Validation
	4.8.2.2 Leave-One-Out Cross-Validation (LOOCV)
	4.8.2.3 Stratified Cross-Validation

	4.8.3 ROC Curves and AUC
	4.8.3.1 ROC Curve (Receiver Operating Characteristic)
	4.8.3.2 AUC (Area Under the Curve)

	4.9 Application for a Physiological Signal: ECG Analysis
	4.9.1 Feature Extraction in ECG
	4.9.1.1 R-peak detection
	4.9.1.2 Heart Rate Variability (HRV)
	4.9.1.3 Waveform morphology

	4.9.2 Classifier Design for Arrhythmia Detection
	4.9.2.1 Real-Time Application

	4.10 Application of SVM for Auditory Evoked Potentials (AEP) Classification Using MATLAB
	4.11 Application of VGG19 and SVM for MRI Brain Tumor Classification Using MATLAB

	5 Chapter 5: Response of Random Signals to Linear Systems
	5.1 Random signals
	5.2 A Linear Time-Invariant (LTI) system
	5.3 Memoryless Systems
	5.4 Systems with Memory
	5.5 Characteristics of Memoryless Systems
	5.5.1 Instantaneous Response
	5.5.2 Causality
	5.5.3 Linearity

	5.6 Response of Memoryless Systems to Random Signals
	5.7 Power Spectral Density (PSD)
	5.7.1 Densities of Energy Spectral Density and Power Spectral Density
	5.7.2 Properties of Power Spectral Density
	5.7.3 Non-negativity
	5.7.4 Symmetry
	5.7.4.1 Wiener-Khinchin Theorem

	5.8 Methods to Estimate Power Spectral Density
	5.8.1 Non-parametric Methods
	5.8.1.1 Periodogram
	5.8.1.2 Welch’s Method
	5.8.1.3 Blackman-Tukey Method
	5.8.1.4 Multitaper Method

	5.8.2 Parametric Methods
	5.8.2.1 Autoregressive (AR) Model-Based Methods
	5.8.2.2 Moving Average (MA) Model
	5.8.2.3 Autoregressive Moving Average (ARMA) Model
	5.8.2.4 Prony’s Method

	5.9 Applications of Power Spectral Density
	5.10 Response of LTI Systems to Random Signals
	5.11 Applications of Random Signal Response in LTI Systems

